GCE

Physics A
H556/02: Exploring physics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation		Meaning
\checkmark	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
*	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L 1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2	Level 2	L2 is used to show 4 marks awarded and L2^ is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.
XP	Wrong physics or equation	Used in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.

Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be presentin answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	
1	D	1	
2	A	1	
3	D	1	
4	C	1	
5	D	1	
6	C	1	
7	B	1	
8	A	1	
9	B	1	
10	B	1	
11	C	1	
12	D	1	
13	A	1	
14	B	1	
15	C	1	
		15	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question			Answer	Marks	Guidance
16	(a)	(i)	$\begin{aligned} & \hline(v=f \lambda) \\ & 340=20 \times 10^{3} \times \lambda \end{aligned}$ wavelength $=1.7 \times 10^{-2}(\mathrm{~m})$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 1 mark for 17 (m); 20 Hz used
		(ii)	Loudspeaker and signal generator Frequency increased until limit of hearing frequency determined using $f=1 / T$	B1 B1 B1	Allow this mark for a labelled diagram Do not allow t for time period
	(b)		Difference: (stationary waves) has nodes / antinodes Similarity: Oscillations are longitudinal	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Differences and/or similarities can be described in terms of net energy transfer, phase or amplitude variations
	(c)		Diagram showing angle within the block measured relative to the normal Increase the (incident) angle until the ray of light runs along the boundary / suffers total internal reflection (ORA) or angle measured using a protractor n determined using $n=1 / \sin C$	B1 B1 B1	Allow $i / \theta / C$ as the angle to be measured. Must be clear which angle is being measured. Expect the normal as a line perpendicular to straight edge of block, and emergent ray. No labels expected for the rays or the normal. Formula in this arrangement
			Total	10	

Question			Answer	Marks	Guidance
17	(a)		The minimum energy needed to remove an electron (from the surface of a metal)	B1	Allow work done for energy Allow photoelectron for electron
	(b)	(i)	energy of blue light / photon of blue light $>2.3 \mathrm{eV} /$ work function or energy of red light / photon of red light $<2.3 \mathrm{eV} /$ work function Energy of photon is independent of intensity (energy of photon given by equation) $E=h f / E=h c / \lambda$ One photon interacts with one electron	B1 B1 B1 B1	Not blue light has frequency > threshold frequency Or red light has frequency < threshold frequency Allow intensity linked to rate of photons / rate of electrons emitted per second Allow Eproportional f / E proportional to $1 / \lambda$
		(ii)	$\begin{aligned} & (\phi=) 2.3 \times 1.6 \times 10^{-19} \text { or } \quad(E=) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}} \\ & \left(K E_{\max }=\right) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}}-2.3 \times 1.6 \times 10^{-19} \\ & (v=) \sqrt{\frac{2 \times 2.5356 \times 10^{-19}}{9.11 \times 10^{-31}}} \\ & (\text { wavelength }=) \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 7.46 \times 10^{5}} \\ & \text { wavelength }=9.8 \times 10^{-10}(\mathrm{~m}) \end{aligned}$	C1 C1 C1 A1	$\begin{aligned} & \phi=3.68 \times 10^{-19}(\mathrm{~J}) ; E=6.2156 \times 10^{-19}(\mathrm{~J}) \\ & K E_{\max }=2.5356 \times 10^{-19}(\mathrm{~J}) \\ & v=7.46 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$
				9	

Question			Answer	Marks	Guidance
18	(a)	(i)	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires
		(ii)	$\begin{aligned} & (E=) 4.5-2.4 \quad \text { or } \quad(R T=) 0.80+0.50+1.2 \\ & 4.5-2.4=I \times(0.80+0.50+1.2) \\ & I=0.84(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$E=2.1(\mathrm{~V}) ; R_{\mathrm{T}}=2.5(\Omega)$ Treat missing 1.2 resistance as TE Allow 2 marks for $2.8(\mathrm{~A}) ; \mathrm{E}=6.9 \mathrm{~V}$ used
		(iii)	$\begin{aligned} & (I=\text { Anev }) \\ & 0.84=\pi \times\left(2.3 \times 10^{-4}\right)^{2} \times 4.2 \times 10^{28} \times 1.60 \times 10^{-19} \times v \\ & v=7.5 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Possible ECF from (ii) Note answer is $2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ for $I=2.76$ (A) Allow 1 mark for 1.9×10^{-4}; diameter used as radius
		(iv)	Sensible suggestion, e.g. use a water bath / fan / only switch on when taking readings Need to lower the temperature / reduce resistance of \mathbf{R}	M1 A1	Allow keep the surroundings cold Allow to keep the temperature / resistance constant OR allow increase in temperature increases resistance

Question		Answer	Marks	Guidance
19	(a)	Direction of field shown as clockwise Three field lines shown as concentric circles and distance between adjacent field lines increasing as distance from wire increases	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Expect at least one field line with an arrow Allow more than three lines, but distance between adjacent field lines increasing distance from wire must increase for all
	(b)	$\begin{aligned} & \text { (force }=\text {) } 2.2 \times 10^{-3} \times 9.81 \\ & 2.2 \times 10^{-3} \times 9.81=B \times 5.0 \times 0.060(=0.072 \mathrm{~T}) \\ & \text { (absolute uncertainty }=\text {) } \frac{0.2}{6.0}+\frac{0.1}{5.0} \quad(\times 0.072=0.0038 \mathrm{~T}) \\ & B=0.072 \pm 0.004 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow calculation of percentage uncertainty $=5.3 \%$ Allow calculation of max $B(=0.0759 \mathrm{~T})$ and min B ($=0.0683$ T) Note B must be given to 2 SF and the uncertainty given to 1 SF. Special case: allow follow through from incorrect B calculation.
		Total	6	

Question		Answer	Marks	Guidance
21	(a)	Electron removed / ejected (from atom) Photon (scattered with) increased wavelength / lower frequency / lower energy	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Needs a comparative statement
	(b)	$\begin{aligned} & \text { (intensity } \left.I=10 \mathrm{e}^{-\mathrm{Hx}}\right)=4.6 \times 10^{3} \times \mathrm{e}^{-0.85 \times 2.1} \\ & \text { Either: }(\text { power }=) 4.6 \times 10^{3} \times \mathrm{e}^{-0.85 \times 2.1 \times 3.4 \times 10^{-4}} \\ & \text { Or (energy per unit area }=4.6 \times 10^{3} \times \mathrm{e}^{-0.85 \times 2.1 \times 30} \\ & \text { energy }=4.6 \times 10^{3} \times \mathrm{e}^{-0.85 \times 2.1 \times 3.4 \times 10^{-4} \times 30} \\ & \text { energy }=7.9(\mathrm{~J}) \end{aligned}$	C1 C1 C1 A1	$\begin{aligned} & \text { intensity }=772\left(\mathrm{~W} \mathrm{~m}^{-2}\right) \\ & \text { power }=0.262(\mathrm{~W}) \\ & \text { energy per unit area }=23160 \mathrm{~J} \mathrm{~m}^{-2} \\ & \text { energy at surface }=47(\mathrm{~J}) 2 \text { marks } \end{aligned}$
	(c)	CAT (CT) scan Any one from - A CAT scan will give 3D image - A CAT scan gives better contrast	M1 A1	Insufficient: more detail / clearer image
			8	

Question		Answer	Marks	Guidance
$\mathbf{2 2}$		The positrons / beta-plus particles annihilate electrons (within the patient) Two gamma-photons are produced these (photons / rays) travel in opposite directions The difference in the arrival times at the detectors is used to locate the point of annihilation / nuclei	B1	B1Allow delay time Allow 'two gamma rays' instead of 'two gamma-photons' Allow gamma symbol

Question		Answer	Marks	Guidance
23	(a)	Control rods: absorb the neutrons (without further fission) Moderator: Slow down the neutrons / decrease KE of neutrons	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Not collide for absorb
	(b)*	Level 3 (5-6 marks) Clear description and clear calculations of energy per kg There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description OR Clear calculations of energy per kg OR Some description and some calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description OR Limited calculations There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	B1×6	Indicative scientific points may include: Description - Energy is produced in both reactions - More energy produced (per reaction) in fission - The (total) binding energy of 'products' is greater - In fusion, nuclei repel (each other) - Fusion requires high temperatures / high KE - Fission reactions are triggered by (slow-)neutrons - Chain reaction possible in fission Calculations - 1 kg of uranium has 4.26 mols $/ 2.56 \times 10^{24}$ nuclei - 1 kg of deuterium has $500 \mathrm{~mol} / 3.01 \times 10^{26}$ nuclei / 1.50×10^{26} 'reactions' - $200 \mathrm{MeV}=3.2 \times 10^{-11} \mathrm{~J}$ - $4 \mathrm{MeV}=6.4 \times 10^{-13} \mathrm{~J}$ - Uranium: $\sim 10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)\left(\right.$ actual value $\left.8.2 \times 10^{13}\right)$ - Deuterium: ~ $10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)$ (actual value $\left.9.6 \times 10^{13}\right)$ - The energy per kg is roughly the same
		Total	8	

Question			Answer	Marks	Guidance
24	(a)	(i)	$\begin{aligned} & (E=) \frac{4000}{0.080} \\ & (F=) \frac{4000}{0.080} \times 1.6 \times 10^{-19} \\ & (a=) \frac{8.0 \times 10^{-15}}{9.11 \times 10^{-31}} \quad \text { or } 8.78 \times 10^{15} \\ & a=8.8 \times 10^{15} \end{aligned}$	C1 C1 C1 A0	$\begin{aligned} & E=5.0 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & F=8.0 \times 10^{-15}(\mathrm{~N}) \end{aligned}$ Allow this mark if the working is shown. If only value is given, then the answer must be 3SF or more
		(ii)	$\begin{aligned} & (t=) \frac{0.12}{6.0 \times 10^{7}} \\ & \left(t=2.0 \times 10^{-9} \mathrm{~s}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	
		(iii)	$\begin{aligned} & (x=)^{1 / 2} \times 8.78 \times 10^{15} \times\left(2.0 \times 10^{-9}\right)^{2} \\ & x=1.8 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow a $=8.8 \times 10^{15}$
	(b)		Downward curved path Same x	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Ignore any line outside of the plates Expect same x by eye
	(c)		Apply a magnetic field at right angles to electric field electric force $=$ magnetic force No resultant vertical force, so only beta-particles with a specific speed will travel horizontally	B1 B1 B1	Note this mark is for the idea that E and B are perpendicular even if direction of B is incorrect Allow 'apply horizontal magnetic field' Allow $E q=B q v$ Allow $v=E / B$ in this arrangement
			Total	11	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

