GCE

Further Mathematics A

Y542/01: Statistics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
	Meaning
Other abbreviations mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
a wrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

Question			Answer	Marks	AO	Guidance	
1	(a)		$y=52.7+0.251 x$	$\begin{gathered} \hline \text { B1* } \\ \text { B1* } \\ \text { depB1 } \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	a in range [0.250, 0.251] b correct to 3 SF Completely correct including letters SC: Correct formulae used for a and b	$\mathrm{M} 1(\mathrm{~A} 1) \mathrm{A} 1$
1	(b)		This quantity is minimised to find best-fit line	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.4	Need "minimised" or "this is its minim	um value" OE
1	(c)		$\begin{aligned} & y^{\prime}=11.5+0.139 x \\ & {\left[y^{\prime}=\frac{5}{9} \times(\text { their } a-32)+\frac{5}{9} \times \text { their } b\right]} \end{aligned}$	M1 A1ft [2]	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	Apply inverse formula at least once All correct, any letters, ft on their y	
2			$\begin{aligned} \mathrm{E}(D)= & 2 \times 0.1+4 \times 0.3+6 \times 0.2 \\ & =2.6 \end{aligned}$ $\left.\begin{array}{l} \mathrm{E}\left(D^{2}\right)=2^{2} \times 0.1+4^{2} \times 0.3+6^{2} \times 0.2 \\ \operatorname{Var}(D)=12.4-2.6^{2} \\ \quad=5.64 \\ \operatorname{Var}(3 D \end{array}\right)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[7]} \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 1.1 \\ \\ 1.1 \\ 1.1 \\ 1.1 \\ 3.1 \mathrm{a} \\ 3.4 \end{gathered}$	$\mathrm{NB}: a$ is not needed by this method Or $\Sigma(x-\mu)^{2} p(x)$ $\Sigma p^{2} d$ oe gets max M1A1M0M1M1 Allow even if their $\operatorname{Var}(D)<0$ SC: $\Sigma(x-\mu)^{2} p(x):$ M1A1, $a=0.4 \mathrm{M} 1$ M1 (use this formula), A1M1A1	Or change $0,2,4,6$ to 4, 10, 16, 22 and find a
3	(a)	(i)	$\begin{array}{r} \mathrm{P}(X \geq 5)-\mathrm{P}(X \geq 11)=0.7^{4}-0.7^{10} \\ \\ =0.212 \end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.1 \mathrm{~b} \\ 3.4 \end{gathered}$	Allow 1 term wrong at either end awrt 0.212	Or $p q^{4}+\ldots+p q^{9}$
		(ii)	$\begin{aligned} & 0.7^{n-1}<1 / 3 \text {, or } 0.103>0.1>0.072 \\ & n_{\min }=5 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.1 \end{aligned}$	Solve $0.3 \times 0.7^{n_{-1}}=0.1$ or <0.1, allow 5 only SC: 5 without sufficient justification:	inequality error
3	(b)		$\begin{aligned} & \frac{1-p}{p^{2}}=42 \Rightarrow 42 p^{2}+p-1=0 \\ & p=\frac{1}{7} \end{aligned}$ Explicitly reject $p=-\frac{1}{6}$ $\mathrm{E}(X)=7$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.1 \\ 2.2 \mathrm{a} \\ 2.3 \\ 2.1 \\ \hline \end{gathered}$	Equate correct variance formula to 42 Correct simplified quadratic equation SC: if $-\frac{1}{7}$ and $\frac{1}{6}$, allow A1 for explici	$\text { y rejecting }-\frac{1}{7}$

Question			Answer	Marks	AO	Guidance
				[5]		
4	(a)	(i)	$\hat{\mu}=\bar{x}=16.8$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	Or exact equivalent
		(ii)	$\begin{aligned} & \frac{48398}{160}-16.8^{2} \quad[=20.2475] \\ & \times \frac{160}{159} \\ & =20.3748 \ldots \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	If single formula used, full marks if correct; M0M1 if wrong but divisor 159 seen anywhere Awrt 20.4, www
4	(b)		$\begin{gathered} \bar{x} \pm z \sqrt{\sigma^{2} / 160} \\ z=2.576 \\ (15.88,17.72) \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.1 \\ & 3.4 \end{aligned}$	Any z from $\Phi^{-1}, 160$ needed, allow $\sqrt{ }$ errors Or better, e.g. 2.575829 Both, 4 sf required by question, www (NB: $\sigma^{2}=20.2475$ gives same end-points to 4 SF but this gets M1A1A0)
4	(c)	(i)	Not needed in (a) as $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ are independent of the distribution	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.4	Mention at least one of $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ explicitly, or "not relevant to \bar{X} "
		(ii)	Needed in (b) as parent distribution not stated to be normal	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	2.4	Must make it clear that two distributions are involved. " n is large" etc: B 0

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& AO \& Guidance \\
\hline 5 \& (a) \& \begin{tabular}{l}
The value of Pearson's pmcc would be changed by (most) such changes. \\
The value of Spearman's \(r_{s}\) would not be changed as the ranks remain unchanged.
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} \& \[
\begin{aligned}
\& 2.5 \\
\& 2.5
\end{aligned}
\] \& \begin{tabular}{l}
Explain effect on Pearson, or not known bivariate normal or not testing for linear correlation \\
Explain why no effect on Spearman (not "not likely to be affected", or "not much affected" or "association not correlation"
\end{tabular} \\
\hline 5 \& (b) \& \begin{tabular}{l}
\(\mathrm{H}_{0}\) : no association between ranks of numbers of items \(\mathrm{H}_{1}\) : (positive) association between ranks
\[
\begin{aligned}
\& \text { Ranks } \begin{array}{lllllllll}
1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \\
4 \& 1 \& 3 \& 2 \& 8 \& 5 \& 9 \& 7 \& 6
\end{array} \\
\& \Sigma d^{2}=38 \\
\& \\
\& r_{s}=1-\frac{6 \Sigma d^{2}}{9\left(9^{2}-1\right)} \\
\& \\
\& =0.683 \\
\& <0.700
\end{aligned}
\] \\
Do not reject \(\mathrm{H}_{0}\). Insufficient evidence of association between rankings of the items
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\\
\text { A1 } \\
\text { B1 } \\
\text { M1ft } \\
\text { A1ft } \\
{[8]}
\end{gathered}
\] \& 1.1
1.1
1.1
1.2

1.1
1.1
1.1

$2.2 b$ \& | Don't insist on "population" here, but allow use of ρ_{s} in both, even if no explanation (not just r_{s}). Context needed, but don't worry about 1- or 2-tailed here |
| :--- |
| Compare TS $(-1 \leq \mathrm{TS} \leq 1)$ with 0.7 , independent ft on TS provided correct formula used, or on CV 0.600 In context, not too positive. FT on TS only SC: 0.600 (2-tailed): B0 M1A0 |

\hline 6 \& (a) \& | H_{0} : Data consistent with $\mathrm{N}\left(100,15^{2}\right)$ |
| :--- |
| H_{1} : Data not consistent with $\mathrm{N}\left(100,15^{2}\right)$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& {[1]}
\end{aligned}
$$
\] \& 1.1 \& Allow: "follows N(100, 152)" or "can be modelled by". Parameters not needed. No other alternatives seen!

\hline 6 \& (b) \& $$
\begin{aligned}
& \mathrm{P}(100 \leq X<110)=0.2475 \\
& \text { Expected frequency }=500 \times 0.2475[=123.754] \\
& \frac{(129-123.754)^{2}}{123.754}[=0.222 \ldots, \mathbf{A G}]
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
{[3]}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
3.4 \\
2.1 \\
2.2 \mathrm{a}
\end{gathered}
$$

\] \& | Probability needs to be seen |
| :--- |
| Sufficient working to justify AG, needs 123.754 at least |

\hline
\end{tabular}

Question			Answer	Marks	AO	Guidance	
6	(c)		$\begin{aligned} & \Sigma X^{2}=10.5 \\ & \chi^{2}(4)=9.488 \text { and } 10.5>9.488 \\ & \text { Reject } H_{0} . \\ & \text { Significant evidence that data is not consistent with } \mathrm{N}\left(100,15^{2}\right) . \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1ft } \\ \text { A1ft } \\ {[4]} \end{gathered}$	$\begin{gathered} \hline 1.1 \\ 1.1 \\ 1.1 \\ 2.2 \mathrm{~b} \end{gathered}$	Like-with-like comparison needed FT on TS or CV here. Needn't be stated if next line right FT on TS (but not CV) if method correct. Wrong CV, e.g. 5.991: B1B0M1A0. No ft on $\mathrm{H}_{0} / \mathrm{H}_{1}$	
6	(d)	(i)	E.g. Too few in $X \geq 110$ or in $X \leq 80$, or too many in others, or data truncated, etc	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.5b	Any relevant point, needn't refer to values of X^{2} "Divide into 5 minute groups": B1. "Data discrete": B0. "The variance" (uncalculated): B0	
		(ii)	Black $=$ PAB version,	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{gathered} \hline 3.3 \\ 3.5 \mathrm{c} \end{gathered}$	Deal with aspect identified in (i) Basically correct, areas roughly same	
				[2]		Examples: Uses "data discrete" in (i) More below 100, so translate to left More above 110 so translate to right Divide into 5-minute groups Variance changed, areas not equal Data truncated but worse truncation shown	B0 B2 B2 B0 B1 B0
7	(a)		H_{0} : Two samples are from identical populations H_{1} : Two samples are from populations with different median ratings. $\begin{aligned} & R_{m}=1+2+3+4+5+9+10+11 \quad(=45) \\ & W=45 \\ & 8(8+8+1)-R_{m}=91 \\ & W_{\text {crit }}=49 \end{aligned}$ Reject H_{0}. Significant evidence that there is a difference in median ratings/opinions have changed	$\begin{gathered} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1ft } \\ \text { A1ft } \\ {[8]} \\ \hline \end{gathered}$	1.1 1.1 1.1 1.1 2.1 1.1 1.1 $2.2 b$	If no reference to "populations", maximum B1 Allow H_{0} : "identical population medians", H_{1} : "not identical populations" or "not identical pop medians" "Pupils' opinions have not changed", etc: B2 If omitted, can still get all other marks FT on TS (<68) or CV FT on TS only. Allow "increased" SC: Sign or paired-sample test, max B2 (hypotheses)	
7	(b)		Eliminate the difference between individual pupils' opinions	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.5b	"Minimises the difference in tastes" B1 (BOD) Scores arbitrary: B1 (etc). Not "more powerful test".	
7	(c)		A paired-sample signed-rank test would have been used	B1	3.5c	Must mention "paired sample" oe - not just "Wilcoxon	

Question			Answer	Marks	AO	Guidance
				$[\mathbf{1}]$		signed rank"
7	(d)	0.025×12870	M1	3.1 a	$0.05 \times 12870=643.5 \mathrm{M} 1$	
		$=322$	A1	3.2 a	321 or 322 or 643 (from 1-tail), must be integer	
			$[\mathbf{2]}$			

Question		Answer	Marks	AO	Guidance
8	(a)	$\begin{aligned} & \mathrm{f}(x)=1 / 2 \\ & \int_{0}^{2} \frac{1}{2} a \cos (a x) \mathrm{d} x=0.3 \\ & {\left[\frac{1}{2} \sin (a x)\right]_{0}^{2}} \\ & \frac{1}{2} \sin (2 a)=0.3 \\ & a=0.32175 \ldots \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	$\begin{gathered} \hline 3.3 \\ 3.1 \mathrm{a} \\ 1.1 \\ 2.1 \\ 1.1 \end{gathered}$	Stated or implied, e.g. on diagram $\int \mathrm{f}(x) a \cos a x \mathrm{~d} x \&$ equated to 0.3 Correct indefinite integral Correct limits, solve Answer, a.r.t. 0.322 (ignore other answers)
8	(b)	$\begin{aligned} & \mathrm{F}(y)=1 / 2 y \quad[0 \leq y \leq 2] \\ & \mathrm{P}\left(Y^{2} \leq m\right)=\mathrm{P}(0<Y \leq \sqrt{ } m) \\ & =\mathrm{F}(\sqrt{ } m) \quad[=1 / 2 \sqrt{ } m] \\ & 1 / 2 \sqrt{ } P_{60}=0.6 \end{aligned} \mathrm{P}_{60}=1.44 \mathrm{l}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline[6] \end{aligned}$	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.1 \\ 2.1 \\ 1.1 \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	Use their $\mathrm{f}(y)$ to obtain CDF Correct $\mathrm{F}(y)$ (range need not be stated explicitly) Find CDF of Y^{2}, allow m^{2} instead of $\sqrt{ } m$, or $\pm \sqrt{ } m$, here Use F (y) correctly Equate to 0.6 and solve, need $\sqrt{ } m$ here 1.44 or exact equivalent

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

