

GCE

Further Mathematics B (MEI)

Y422/01: Statistics major

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answergiven
awrt	Anything which rounds to
BC	By Calculator
DD	This indicates that the instruction In this question you must show detailed reasoning appears in the question

Q	Question		Answer	Marks	AOs	Guidance	
1	(a)		34.711	B1	1.1		
			± 1.96	M1	3.3		
			$\times \frac{1.53}{\sqrt{50}}$	M1	1.1		
			$= 34.711 \pm 0.424$ or $(34.287, 35.135)$	A1	3.4	Allow 34.29 to 35.13 or 35.14	
				[4]			
1	(b)		50 is a sufficiently large sample to apply the CLT	B1*	2.2b	For mention of central limit theorem	No credit if CLT not
			which states that for large samples the distribution of				mentioned
			the sample mean is approximately Normal	*B1	2.4	For full statement (including CLT)	
				[2]			

Question		n	Answer	Marks	AOs	Guidance	
2	(a)		$P(X=0) = \frac{6}{6} \times \frac{1}{6} \times \frac{1}{6}$	M1	3.1a		Allow M1 for $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$
			$=\frac{1}{36}$	A1	1.1	AG	
2	(b)		0.30	B1	1.1	For heights	Roughly correct but
			$\begin{bmatrix} \vdots & 0.20 \\ \vdots \\ 0.10 \\ 0.00 \\ 0 \\ 0 \\ 1 \\ 2 \\ r \end{bmatrix}$	B1 [2]	1.1	For axes and labels	Do not allow just P on vertical axis
2	(c)		The distribution has (slight) negative skew	B1 [1]	1.1	Allow 'roughly symmetrical' or 'unimodal'	Not 'Normal distribution'
2	(d)		DR E(X) = $0 \times \frac{1}{36} + 1 \times \frac{5}{36} + 2 \times \frac{2}{9} + 3 \times \frac{1}{4} + 4 \times \frac{2}{9} + 5 \times \frac{5}{36}$	M1	1.1a		
			$=\frac{105}{36}=\frac{35}{12}=2.9166\ldots$	A1	1.1	Allow fraction or decimal form	
			$E(X^{2}) = 0^{2} \times \frac{1}{36} + 1^{2} \times \frac{5}{36} + 2^{2} \times \frac{2}{9} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{2}{9} + 5^{2} \times \frac{5}{36}$ $= \frac{371}{36} = 10.3055$	M1	1.1		
			$Var(X) = 10.3055 (2.9166)^2$	M1	1.2		
			$=\frac{259}{144}=1.80$ (1.7986)	A1	1.1		
				[5]			
2	(e)		Variance = $30^2 \times 1.7986 = 1619$ (pence ²)	B1	1.1		
2	(f)		Average amount received = $30 \times 2.916 = 87.5$	B1	3.1 a		
			$k - 87.5 = 12.5 \Rightarrow k = 100$	B1 [2]	1.1		

(c)

P(at least 60 decays) = 1 - 0.9077 = 0.0923

	Question	Answer	Marks	AOs	Guidance		
3	(a)	Using B(50, 0.04)	M1	3.3			
		P(X=2) = 0.276	A1	1.1	BC		
			[2]				
3	(b)	$0.96^9 \times 0.04 = 0.0277$	B1	1.1		Allow 0.028	
			[1]				
3	(c)	$0.96^{20} = 0.442$	B1	1.1			
			[1]				
3	(d)	Expected value for one misunderstood = $\frac{1}{0.04}$ = 25	B1	2.1		Must quote probabilities to get full marks	
		Because geometric	E1	2.4			
		For 3 misunderstood expected number = $25 + 25 + 25$	F1	11			
		= 75	121	1.1			
			[3]	2.1			
3	(e)	Require P(2 misunderstood in first 59) \times 0.04 so using P(50, 0.04) gives P(X=2) = 0.267	BI M1	3.1a	For identifying required probability		
		so using $B(39, 0.04)$ gives $I(X - 2) = 0.207$ 0 267 × 0.04 = 0.0107		$\frac{2.2a}{1.1}$	BC		
		0.207 0.01 0.0107	[3]				
4	(a)	Nuclei decay randomly and decays are independent with constant probability $\frac{1}{200000}$	E1	2.4	For partial explanation of binomial		
		The number of decays out of 1 000 000 is being counted, so a binomial distribution is appropriate	E1	2.4	For full explanation		
		Because $n = 1000000$ is large and $p = \frac{1}{200000}$ is small					
		a Poisson distribution is also appropriate	E1 [3]	2.4	For explanation of Poisson		
4	(b)	Po(5)	M1	3.3			
	$ \rangle $	P(X = 6) = 0.146	A1	1.1	BC		
		P(X > 6) = 1 - 0.762 = 0.238	A1	1.1	BC		
			[3]				
4	(c)	$Mean = 10 \times 5 = 50$	B1	3.3		Allow 0.092	

B1

[2]

1.1

BC

5 (a) Two A and one $B \sim N(2 \times 3.9 + 7.8, 2 \times 0.32^2 + 0.41^2)$ B1 3.3 For N and mean Ai N(15.6, 0.3729) N(15.6, 0.3729) M1 1.1 For variance SC P(> 16) = 0.256.0025622.0 A1 3.4 BC BC	Allow if N stated anywhere in answer SOI
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	anywhere in answer SOI
N(15.6, 0.3729) P(> 16) = 0.256 (0.25622) N(1 1.1 For variance A1 3.4 BC	501
P(> 16) = 0.256 (0.25622)	
5 (b) Four B – one C ~ N(4×7.8 – 30.2, 4×0.41 ² + 0.64 ²) B1 3.3 For N and mean A1	Allow -1 for mean
N(1, 1.082) M1 1.1 For variance A1	Allow if N stated
P(within 1 unit) = 0.473 (0.47274) A1 3.4 BC an	anywhere in answer
	SOI
5 (a) DP	
B 1 3.3 Hypotheses in words only must	
include "population"	
where μ is the population mean capacitance B1 1.2 For definition in context	
Sample mean = 29.96 B1 1.1	
Est. population variance $=\frac{1}{9}\left(8981.0 - \frac{299.6^2}{10}\right)$ M1 1.1	
= 0.5538 A1 1.1 Or	Or $sd = 0.7442$
Test statistic = $\frac{29.96 - 30.2}{\sqrt{0.5538}}$ M1 3.3 FT their mean and/or sd	
$\sqrt{10}$	
=-1.020 A1 1.1 BC	
Refer to t_9 M13.4No FT if not t_9	
Critical value (2-tailed) at 5% level is 2.262 A1 1.1 Or	Or
P(P(t < -1.020) = 0.1672
-1.020 > -2.262 so not significant (do not reject H ₀) M1 2.2b Or $1.020 < 2.262$ Or	Or 0.1672 > 0.025
Insufficient evidence to suggest that the capacitance of EI 3.5a	Answer must be in
the batch is different from 30.2 [11]	context

Question		n	Answer	Marks	AOs	Guidance	
6	(a)		Mean = 1.725	B 1	1.1		$Or \frac{345}{200}$
			Variance = 1.768	B 1	1.1	Condone 1.759 (using divisor <i>n</i>)	200
			The variance is reasonably close to the mean so this does support the suitability of a Poisson model	E1	2.2b		Dep on mean and variance correct
((h)		$C_{-11}C_{-1} = 0.2106$	[3] D1	2.4		Do not allow 0.211
0	(D)		Cell D3 = $62 1124$	BI B1FT	3.4 2.29	$200 \times \text{their C3}$ (62 12 if use 0 3106)	Allow 62.2 from 0.311
			$(65-62,1224)^2$		2.24	200 × then C5 (02.12 if use 0.5100)	Must show working to
			Cell E3 = $\frac{(03 - 02.1224)}{62.1224}$	M1FT	1.1 a		get M1
			= 0.1342	A1	1.1		Allow 0.126 from 62.2
				[4]			
6	(c)		Because otherwise some expected frequencies would	Ed			
			be less than 5 so too small for the test to be valid	EI [1]	3.5b	For 'less than 5 so invalid'	
6	(d)		H ₀ : Poisson model is a good fit				
	()		H_1 : Poisson model is not a good fit	B1	2.5		
			$X^2 = 2.43$	B1FT	1.1	FT Their value of E3	
			Refer to χ_5^2	B1	3.4	For degrees of freedom $= 5$ soi	
			Critical value at 5% level = 11.07	B1	1.1		
							Allow M1 (not A1) for
				N/I	1 1	For comparison with critical value	comparison with any
			2.43 < 11.0 / so result is not significant	NII	1.1		chi squared critical value eq. 1.145 or
							5.991
			There is insufficient evidence to suggest that the	A1	2.2b	Conclusion in context	
			Po(1.7) model is not a good fit.				
				[6]			

	Question		Answer	Marks	AOs	Guidance	
7	(a)		The pairing will eliminate any differences in grip	E1	2.2b	Give 1 mark for any valid comment	
			strengths between different people and so will only	E1	2.2b	For 2 marks must include pairing	
			compare the grip strengths of the dominant and non-				
			dominant hands	[2]			
7	(b)		The parent population of differences must be Normally	E1	1.1	For Normally distributed	
			distributed	E1	1.2	For full answer including 'differences'	
				[2]			
7	(c)		It does because the confidence interval contains 2	E1	3.5a		
				[1]			
7	(d)	(i)	Sample mean difference $= 2.39$	B 1	1.1		
			$0.45 = 1.96 \times \frac{\text{SD}}{\sqrt{100}}$	M1	3.1b		
			Sample $SD = 2.30$ (2.2959)	A1	1.1		
				[3]			
7	(d)	(ii)	The sample must be random	B1	3.2b		
			since only a random sample enables proper inference	B1	2.4	Do not allow eg a random sample is	
			about the population to be undertaken			less likely to be biased	
				[2]			

8(a)(i)Predicted = 50.5B11.18(a)(ii)Although this point lies within the data (interpolation).B12.2aMention of 1 of the three	e points with
8 (a) (ii) Although this point lies within the data (interpolation). B1 2.2a Mention of 1 of the three	e points points with
$\begin{bmatrix} c_{r} \\ c_$	
8 (a) (iii) Coordinates (47.3, 48.7) B1 1.1 [1]	
8(a)(iv)This is the point with coordinates which are the means of the x- and y-values respectivelyB1 [1]1.1Allow 'This is the centre	oid'
8(b)(i)The scatter diagram is very roughly elliptical and so the distribution may be bivariate NormalE13.5a[2][2]	
8 (b) (ii) $S_{vt} = 3886.53 - \frac{1}{20} \times 80.37 \times 970.86$ (= -14.87) M1 1.1a Numerical evaluations a at this stage	re not required
$S_{tt} = 324.71 - \frac{1}{20} \times 80.37^2 (= 1.743) \qquad M1 \qquad 1.1 \qquad \text{For either } S_{tt} \text{ or } S_{vv}$	
$S_{vv} = 47829.24 - \frac{1}{20} \times 970.86^{2} (= 700.78)$ $r = \frac{S_{tv}}{\sqrt{S_{tt}S_{vv}}} = \frac{-14.87}{\sqrt{1.743 \times 700.78}}$ = -0.4255 M1 A1 I.1 BC	ing sq. root
8 (b) (iii) $H_0: \rho = 0, H_1: \rho < 0$ B1 3.3 For both hypotheses	Do not allow <i>r</i> in place
where ρ is the population pmcc between t and v B1 2.5 For defining ρ	of ρ
For $n = 20$, the 5% critical value is 0.3783 B1 3.4 For correct critical value	e Hypotheses in words
Since $ -0.4255 > 0.3783$ the result is significant, so there is sufficient evidence to reject H ₀ M1 1.1 Allow $-0.4255 < -0.374$ There is sufficient evidence at the 5% level to suggest	population mentioned
that there is negative correlation between marathon time and VO_{2max} A1FT2.2bFT for conclusion in wo	Answer must be in context

Question		n	Answer	Marks	AOs	Guidance		
9	(a)		$P(X > \frac{1}{2}n) = \frac{\frac{1}{2}(n+1)}{2n+1}$	M1 M1	3.1a 1.1	For correct denominator For correct numerator		
			$=\frac{n+1}{2(2n+1)}$	A1	1.1			
9	(b)		$(2r + 1)$ such as $V_{rr}(Y) = \frac{1}{2} [(2r + 1)^2 + 1]$	[3]	2.1			
	(~)		$(2n+1)$ values so $var(x) = \frac{1}{12}[(2n+1) -1]$	NI I	3. 1a			
			Var of sum of 10 values $=10 \times \frac{1}{12} [(2n+1)^2 - 1]$	M1	1.1		Allow M1 for 10× any attempt at variance	
			$=\frac{10}{3}n^2 + \frac{10}{3}n$	A1	1.1			
				[3]				
10	(a)		104				Γ	
10	(a)		$P(T \le 56) = \frac{104}{500} = 0.208$	B 1	1.1			
			$P(T > 61) = 1 - \frac{253}{500} = 0.494$	B1	1.1			
10				[2]				
10	(b)		E(T) = 25 + 28 + 5 + 3 = 61 Var(T) = $\frac{1}{2} \times 10^2 + \frac{1}{2} \times 6^2 + 4 + 16$	B1 M1	3.1a 1.1			
			$=\frac{94}{12} (=31.333)$	A1	1.1			
			$W \sim N(61 \ 31 \ 333)$ so $P(W < 56) = 0.186$	B1	3.3	BC		
			P(W > 61) = 0.5	B1	1.1			
				[5]				
10	(c)		Because the mean is 61 and both the uniform and	E1	2.2b			
			Normal distributions are symmetrical so you	E1	2.4	For second mark must mention		
			would expect the simulated probability to be very	[2]		symmetrical		
			close to 0.5	[2]				

(Juestia	n	Answer	Marks	AOs	Guidance	
11	(a)		$F(3) = 1 \Longrightarrow \int_0^2 ax^2 dx + \int_2^3 b(3-x)^2 dx = 1$	M1	3. 1a		
			$\Rightarrow \frac{8}{3}a + \frac{1}{3}b = 1$	A1	1.1		
			$E(X) = 2 \Rightarrow \int_0^2 ax^3 dx + \int_2^3 bx(3-x)^2 dx = 2$	M1	3.1 a		
			$\Rightarrow 4a + \frac{3}{4}b = 2$	A1	1.1		
			$a = \frac{1}{8}, \ b = 2$	A1	1.1		
				[5]			
11	(b)		$F(2) = \int_0^2 \frac{1}{8} x^2 dx = \frac{1}{3}$	B1	3. 1a		
			$\Rightarrow \int_2^m 2(3-x)^2 \mathrm{d}x = \frac{1}{6}$	M1	2.2a		
			$\Rightarrow -\frac{2}{3}(3-m)^3 + \frac{2}{3} = \frac{1}{6}$				
			$\Rightarrow (3-m)^3 = \frac{3}{4} \Rightarrow m = 2.09 (2.0914)$	A1	1.1	Or $m = 3 - \sqrt[3]{\frac{3}{4}}$	
				[3]			
11	(c)		Using N(2, $\frac{0.2}{50}$)	M1	3.1 a	For use of Normal distribution	
			N(2, 0.004)	M1	1.1a	For correct values	
			Estimate $P(Mean < 1.9) = 0.0569$	A1 [3]	1.1		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

