

GCE

Further Mathematics B (MEI)

Y434/01: Numerical methods

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answergiven
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Q	uestion		Answer	Marks	AOs		Guidance
1	(a)	i	$\frac{1.414214-\sqrt{2}}{\sqrt{2}}$ or $\frac{1.414214^2-2}{2}$ oe soi	M1	1.1a	ignore modulus signs	
			0.00000309449 isw	A1	1.1	to 2 sf or more	
			0.00000618898 isw	A1	1.1	to 2 sf or more	
				[3]			
1	(a)	ii	the second relative error is double the first relater error oe	Eive B1	2.2a		
				[1]			
1	(b)		Ben is wrong because the spreadsheet stores 1.414214 to a higher precision than is displayed (and so when the square of this number is calculated, 2 is returned) isw	B1	2.4	or 1.414214 is an approximation to $\sqrt{2}$ so 1.414214 ² \neq 2 oe	
				[1]			
2	(a)		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A1	1.1	finds 4 ⊿ values, allow one error all correct	
				[2]			

Question		Answer	Marks	AOs		Guidance
2	(b)	the second differences are constant oe	B1	1.1	allow the 3 rd differences are zero	
			[1]			
2	(c)	$-0.65 + 0.3(x-1) + 1.82 \times \frac{(x-1)(x-2)}{2!}$	M1	1.1	must be correct form; allow 1 substitution error	
		$[P_2(x) =] 0.91x^2 - 2.43x + 0.87$	A1 A1	1.1 1.1	two of three terms correct all correct	
			[2]	1.1		
3	(a)		[3]			
5	(a)	$\sinh x^2 - x^3 - 2 = 0$	B1	1.1	must see $= 0$	
			[1]			
3	(b)	=IF(H5>0,G5,E5)	B1	1.1	or =IF(H5<0,E5,G5)	must see =
			[1]			
3	(c)	$\frac{1.48719 \times 17.2899 - 2 \times -0.77825}{17.28990.77825} 0\mathbf{e}$	M1	3. 1a	may be implied by 1.509	
		awrt 1.50928	A1	1.1	NB f(1.50928) = -0.6111 to 4 sf	
		awrt 1.52603	A1	1.1		
			[3]			

Question		Answer	Marks	AOs		Guidance
3	(d)	the ratios are decreasing which suggests the convergence is (slightly) faster than 1 st order	B1	2.2b	allow between 1 st and 2 nd order	do not allow eg not first order
		the ratios are close to 1 which suggests the convergence is slow	B1	2.2b		
			[2]			
4	(a)	$\frac{4.2472072-4}{0.1} \text{ or } \frac{4.0239468-4}{0.01} \text{ or }$ $\frac{4.0023871-4}{0.001} \text{ or } \frac{4.0002386-4}{0.0001}$	M1	3.1 a	use of forward difference method	may be implied by one correct answer
		$2.472072 \qquad (\text{with } h = 0.1)$	A1	1.1	any two correct	
		2.39468 (with $h = 0.01$)	A1	1.1	any three correct	
		2.3871(with $h = 0.001$)2.386(with $h = 0.0001$)	A1	1.1	all four correct	
			[4]			
4	(b)	comparison of last two estimates	M1	1.1	if M0 allow SC1 for 2.39 is secure or	
		2.39 is secure or 2.386 is possible	A1	2.2b	2.386 is possible regardless of justification	
			[2]			
5	(a)	48×0.5 soi	M1	3.3		
		£24	A1	3.4		
			[2]			
5	(b)	consistent because 1.77 < 24	B1	2.4	allow consistent because error < mpe	
			[1]			

Mark Scheme

Q	Question	Answer	Marks	AOs		Guidance
5	(c)	52×0.495	M1	3.3		
		£25.74	A1	3.4		
			[2]			
5	(d)	this could happen if a large number of items	B1	3.5a		
		eg cost less than £1				
		eg cost £1.99 or £2.99 etc				
		eg more than 50p over the pound				
		eg the mean error per item was 52.38p				
			[1]			
5	(e)	$mpe = \pounds 0.99n$	B1	3.4	condone omission of units, allow 99 <i>n</i> pence	
			[1]			
5	(f)	expected error for Nina's model is £0 since you would expect to round half the prices up and half down oe	B1	2.4		U6
		or				
		expected error in Kareem's model is $-\pounds 0.495n$ since you would expect the average "chop" to be 49.5p oe				
		so new model should be "estimated cost" + $\pounds 0.495n$	B1	3.5c		

Question		Answer	Marks	AOs		Guidance
			[2]			
6	(a)	$\frac{1}{2x} - 2x + 1 \text{ seen}$	M1	2.1		
		$x_{n+1} = x_n - \frac{0.5\ln(x_n) - x_n^2 + x_n + 1}{\frac{1}{2x_n} - 2x_n + 1}$ oe soi	M1	1.1	may be implied by correct iterates	condone omission of subscripts
		1 3 2.0791668 1.7783346 1.7360141 1.7351281 1.7351277	M1	1.1	at least three further correct iterates derived from starting at 1 if M0 allow SC1 for 1.735128 from N-R method used with different x_0 and at least 3 correct iterates shown	correct to at least 5 sf where appropriate
		1.735128	A1	1.1		
			[4]			
6	(b)		M1 A1	2.4 1.1	tangent at (1,1) (1,1) to (3,0)	
			[2]			

Y434/01

Q	uestion	Answer	Marks	AOs		Guidance
6	(c)	N-R generally has 2^{nd} order convergence whereas fixed point iteration generally has 1^{st} order convergence	B 1	2.4	allow eg N-R converges faster allow eg fixed point iteration more likely to fail oe	
			[1]			
6	(d)	ln(-0.403) is undefined (so the spreadsheet cannot compute a value)	B1	2.2a		
			[1]			
6	(e)	$ \begin{array}{c} 0.5 \\ 1.0739769 \\ 1.4524673 \\ 1.6245304 \\ 1.6932631 \\ 1.7194743 \\ 1.7293015 \\ \end{array} $ converges to β	M1 A1	2.1 2.2a	need to see at least 3 iterates correct to at least 5 sf	
			[2]			

Y434/01

Q	uestion	Answer	Marks	AOs		Guidance
6	(f)	$\begin{array}{c} 0.5 \\ \hline 0.4764669 \\ \hline 0.4528879 \\ \hline 0.4293074 \\ \hline 0.4057756 \\ \hline 0.3823498 \\ \hline \end{array}$	M1 A1	1.1 2.2a	at least 3 correct iterates derived from starting at 0.5 if M0 allow SC1 for 0.111082 from relaxation method used with different x_0 and at least 3 correct iterates shown	iterates correct to at least 5 sf
			[2]			
7	(a)	$\frac{1}{16}$ isw or 0.0625 isw	B1	2.2a		
			[1]			
7	(b)	by comparison of T_{16} and T_{32} 0.6 is certain or 0.63 is probable	B1	2.2b		
			[1]			

Mark Scheme

Q	uestion	Answer	Marks	AOs		Guidance
7	(c)	r appears to be between 0.25 and 0.5	B1	2.2b		
		so order of convergence is between 1^{st} and 2^{nd} order	B1	2.2b		
		Alternative				
		$r > 0.25$ so convergence slower than 2^{nd} order	B 1			
		r < 0.5 so convergence faster than 1 st order	B 1			
			[2]			
7	(d)	$\frac{2M_n+T_n}{3} \text{ or } \frac{4T_{2n}-T_n}{3} \text{ soi}$	M1	1.1		
		= $(2*O5 + N5)/3$ or = $(4*N6 - N5)/3$	A1	1.1	must see =	
			[2]			
7	(e)	awrt 0.62658745	B1	1.1		
		awrt 0.00029	B1	1.1		
		awrt 0.354	B1	1.1		
			[3]			

Q	uestion	Answer	Marks	AOs		Guidance
7	(f)	S_{2n} and difference from table used in	M1	3.1 a	eg their 0.62658745 and their 0.00029	If M0 allow SC2 for awrt 0.626607 obtained
		extrapolation				from
		awrt 0.62658745 and awrt 0.00029 used	A1	1.1	may see more dp for difference	$\frac{16 \times 0.62658745 - 0.62629755}{15}$
		$0.62658745 + 0.00029 \times \frac{r}{1-r}$	A1	1.1	$0.35 \le r \le 0.36$	then SC1 for 0.627
						obtained from comparison
		awrt 0.62674355 to awrt 0.62675058	A1	1.1		with 3 ₆₄
		comparison with their S_{64}	M1	3.2a		
		0.6267 is secure	A1	2.2b	or 0.62675 is possible; allow 0.626746	
					the last two A marks are only available if answers obtained from extrapolation to infinity from S_{64}	
			[6]			

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

