GCE

Further Mathematics B (MEI)

Y436/01: Further pure with technology

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
E	Explanation mark 1
SC	Special case
\wedge	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Quest	Answer	Marks	AOs		Guidance
(c)	For the circles to touch, need $d=2$ in the above. $\begin{aligned} & 2=2 \sqrt{2} \sqrt{1-\cos (c-b)} \\ & \Rightarrow 1=\sqrt{2} \sqrt{1-\cos (c-b)} \\ & \Rightarrow \frac{1}{\sqrt{2}}=\sqrt{1-\cos (c-b)} \end{aligned}$ Then $\begin{aligned} & \Rightarrow \frac{1}{2}=1-\cos (c-b) \\ & \Rightarrow \cos (c-b)=\frac{1}{2} \\ & \Rightarrow c-b=\frac{\pi}{3}, \text { since } 0 \leq b<c<\pi \end{aligned}$	M1 A1 [2]	2.1 1.1	Or just state that it's an equilateral triangle in this case.	
(d)		B1 B1 [2]	1.1 1.1	Equations are not required in this part.	

Question		Answer	Marks	AOs		Guidance
	(e)	$\begin{aligned} & x^{2}+y^{2}=1 \\ & x^{2}+y^{2}=9 \end{aligned}$	B1 B1 [2]	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$		
2	(a)	Gradient of the line through $(0, a)$ and $\left(1, a^{2}\right)$ is $\frac{a^{2}-a}{1-0}=a(1-a) .$ The line crosses the y-axis at $(0, a)$ so the equation of the line is $y=a(a-1) x+a$	M1 A1 [2]	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$		
	(b)	The two straight lines are $y=b(b-1) x+b$ and $y=c(c-1) x+c$. These are parallel if $\begin{aligned} & b(b-1)=c(c-1) \\ & \Rightarrow 0=c^{2}-b^{2}+b-c \\ & \Rightarrow 0=(c-b)(c+b)-(c-b) \\ & \Rightarrow 0=(c-b)(c+b-1) \\ & \Rightarrow 0=c+b-1(\text { since } c \neq b) \\ & \Rightarrow c+b=1 \end{aligned}$	M1 M1 A1 [3]	3.1a 2.4 2.1	Note that equation can be solved using CAS which is an acceptable method.	

3	(a)	(i)				Pseudo code accepted, condone lack of syntax, give reasonable BOD on possible transcription errors	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (b) \& (i) \& \begin{tabular}{l}
Appropriate structure program \\
Loop with correct range and counts number of values coprime to k . \\
Fully correct programme
\end{tabular} \& M1 M1 A1 [3] \& \[
\begin{aligned}
\& 3.3 \\
\& 2.1 \\
\& 2.5
\end{aligned}
\] \& \begin{tabular}{l}
Pseudo code accepted, condone lack of syntax, give reasonable BOD on possible transcription errors \\
Example code for Python with hcf function as in 2(i) above. \\
def phi(k): \\
count \(=0\) \\
for i in range \((1, \mathrm{k})\) : \\
if \(\operatorname{hcf}(\mathrm{i}, \mathrm{k})==1\) : \\
count \(=\) count +1 \\
return count \\
print(phi(k))
\end{tabular} \& \\
\hline \& (ii) \& \(\varphi(128)=64\) and \(\varphi(1000)=400\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& {[2]} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1.1 \\
\& 1.1
\end{aligned}
\] \& \& \\
\hline \& (iii) \& \(\varphi\left(2^{n}\right)=2^{n-1}\). This is because all the odd numbers less than \(2^{\mathrm{n}}\) are coprime to \(2^{\mathrm{n}}\) and all the even numbers less than \(2^{n}\) are not. The are \(2^{n}\) \({ }^{-1}\) such odd numbers. \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& 2.1
3.2a \& \begin{tabular}{l}
Spotting odd/even property. \\
Correct value in terms of \(n\).
\end{tabular} \& \\
\hline \& (iv) \& \(\varphi\left(10^{n}\right)=4 \times 10^{n-1}\). All numbers less than \(10^{n}\) with final digit \(1,3,7\) and 9 are coprime to \(10^{n}\), any other number is not. There are four such numbers in \(1,2, \ldots, 10\), four in \(11,12, \ldots, 20\), four in \(21,22, \ldots, 30\), and so on. There are \(10^{n-1}\) such groups before reaching \(10^{n}\). So there are \(4 \times 10^{n-1}\) number less than \(10^{n}\) which are coprime to \(10^{n}\). \& M1
M1

A1

$[3]$ \& | 2.1 |
| :--- |
| 2.2a |
| 3.2a | \& | Spotting end digit property. |
| :--- |
| Applying it across all numbers less than 10^{n}. |
| Correct value in terms of n. | \&

\hline
\end{tabular}

(c)	(i)	$\mathrm{F}(5)=9$, the corresponding fractions are $\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$. $\mathrm{F}(6)=11$, the corresponding fractions are $\frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$	B1 B1 [2]	1.1 1.1		
	(ii)	Adding to the distinct fractions between 0 and 1 with denominator k, the only 'new' fractions with denominator $k+1$ have numerators which are coprime to $k+1$. Therefore there are $\varphi(k+1)$ of these.	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	3.1a 2.4		
	(iii)	By (c)(ii) required value is $\sum_{k=1}^{100} \varphi(k)$. By adapting previous program this is 3043 .	M1 A1 [2]	$3.1 \mathrm{a}$ 1.1	```By adding code such as def fracs(k): count =0 for i in range(}1,\textrm{k}+1)\mathrm{ : count = count + phi(i) return count print(fracs(100))```	

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& (iv) \& Fig 3.2 \& B1

[2] \& 1.1 \& Sufficient to be increasing. \& \&

\hline \& (v) \& One is increasing for the values of x shown. The other has a stationary point (local maximum). \& $$
\begin{aligned}
& \hline \text { B1 } \\
& {[1]}
\end{aligned}
$$ \& 1.2 \& Either comment will do. Allow 'one intersects the x -axis (eventually), the other doesn't.' \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (c) \& (i) \& \begin{tabular}{l}
A1 contains 0 \\
B1 contains 0 \\
I1 contains 0.1 (the value of \(h\)) \\
K1 contains a (the value of \(a\)) \\
C1 \(=\$ 1 \$ 1 *((1-\) \\
A1)/(2*(A1+1))+\$K\$1*ATAN(B1)) \\
D1 \(=\) \$I \(\$ 1\) *(\((1-\) \\
\((\mathrm{A} 1+\$ \mathrm{I} \$ 1)) /(2 *(\mathrm{~A} 1+\$ \mathrm{I} \$ 1+1))+\$ \mathrm{~K} \$ 1 * \operatorname{ATAN}(\) \\
B1+C1)) \\
A2 \(=\mathrm{A} 1+\$ \mathrm{I} \$ 1\) \\
\(\mathrm{B} 2==\mathrm{B} 1+0.5^{*}(\mathrm{C} 1+\mathrm{D} 1)\) \\
copy down
\end{tabular} \& B1
B1
B1
B1

[4] \& \[
$$
\begin{gathered}
\text { 3.1a } \\
\text { 3.1a } \\
\text { 3.1a } \\
2.5
\end{gathered}
$$

\] \& | Give reasonable BOD on possible transcription errors and consider correct answers to 4(c)(ii), 4(c)(iii), 4(c)(iv) as evidence of correct formulae in the spreadsheet. |
| :--- |
| Allows for a and h to be varied. |
| Cols for x and y |
| Cols for k_{1} and k_{2} |
| Formulae for x_{n+1} and y_{n+1} | \& \&

\hline \& (ii) \& Approximation to y when $x=5.0$ with $a=0.5$, using $h=0.1$ is -0.249889 (to 6 d.p.) \& 31 \& 1.1 \& Correct answer to at least 3 s.f. Must for correct for the number of significant figures given. \& \&

\hline \& (iii) \& $$
\begin{aligned}
& \text { Approximation to } y \text { when } x=5.0 \text { with } a=1 \text {, using } \\
& h=0.1 \text { is } 3.160809 \text { (to } 6 \text { d.p.) }
\end{aligned}
$$ \& B1

[1] \& 1.1 \& Correct answer to at least 3 s.f. Must for correct for the number of significant figures given. \& \&

\hline
\end{tabular}

Question	A01	A02	A03	E	C	A	
1(i)(A)	1			1			C1, C4
1(i)(B)	1	1		2			C4
1(i)(C)	1	1		1	1		C4
1(i)(D)	2			2			C9
1(i)(E)	2			2			C4, C9
1(ii)(A)	2			2			C4
1(ii)(B)		2	1	1	2		C4
1(ii)(C)	2			1	1		C9
1(ii)(D)	2	2	1			5	C9
2(i)(A)		2	1	2	1		T1, T5
2(i)(B)	1			1			T5
2(ii)(A)		2	1	2	1		T6
2(ii)(B)	2			1	1		T5, T6
2(ii)(C)		1	1	1	1		T5, T6
2(ii)(D)		2	1	1	1	1	T5, T6
2(iii)(A)	2			2			T5
2(iii)(B)		1	1			2	T5, T6
2(iii)(C)	1		1			2	T5, T6
3(i)(A)	1			1			C1
3(i)(B)	1			1			C1
3(i)(C)	2			2			C5
3(ii)(A)	2			2			C2, C6
3(ii)(B)	2			2			C6
3(ii)(C)	1				1		C6
3(iii)(A)		1	3		3	1	C7
3(iii)(B)	1				1		C7
3(iii)(C)	1				1		C7
3(iii)(D)		2	2			4	$\begin{gathered} \mathrm{C} 6, \mathrm{C} 7 \\ \mathrm{C} 8 \end{gathered}$
Total	30	17	13	30	15	15	0.00

S\&C marks: 1(ii)D 5 marks

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

