

GCE

Further Mathematics B (MEI)

Y436/01: Further pure with technology

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and ¥	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
oe rot	Or equivalent Rounded or truncated
oe rot soi	Or equivalent Rounded or truncated Seen or implied
oe rot soi www	Or equivalent Or equivalent Rounded or truncated Seen or implied Without wrong working
oe rot soi www AG	Or equivalent Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given
oe rot soi www AG awrt	Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given Anything which rounds to
oe rot soi www AG awrt BC	Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given Anything which rounds to By Calculator

Question		n	Answer	Marks	AOs		Guidance
1 ((a)		$x^2 + v^2 = 4$	B1	1.2		
				[1]			
	(b)		Let <i>d</i> be the distance concerned. Then <i>d</i> is as in the diagram below.	M1 A1 [2]	2.1 1.1	Diagram not necessary. Alternatives here include $\frac{d^2 = (2\cos(c) - 2\cos(b))^2}{+(2\sin(c) - 2\sin(b))^2}$	

Questio	n	Answer	Marks	AOs		Guidance
(c)		For the circles to touch, need $d = 2$ in the above.				
		$2 = 2\sqrt{2}\sqrt{1 - \cos(c - b)}$				
		$\Rightarrow 1 = \sqrt{2}\sqrt{1 - \cos(c - b)}$				
		$\Rightarrow \frac{1}{\sqrt{2}} = \sqrt{1 - \cos(c - b)}$				
		Then $\Rightarrow \frac{1}{2} = 1 - \cos(c - b)$	M1	2.1	Or just state that it's an equilateral triangle in this case.	
		$\Rightarrow \cos(c-b) = \frac{1}{2}$				
		$\Rightarrow c-b=\frac{\pi}{3}$, since $0 \le b < c < \pi$	A1 [2]	1.1		
(d)		$x^2 + y^2 = 9$	B1	1.1	Equations are not required in this part.	
			B 1	1.1		
		$x^2 + y^2 = 1$	[2]			
		-2				
		-3				

Question		n	Answer	Marks	AOs		Guidance
	(e)		x2 + y2 = 1 x2 + y2 = 9	B1 B1 [2]	1.2 1.2		
2	(a)		Gradient of the line through $(0, a)$ and $(1, a^2)$ is $\frac{a^2 - a}{1 - 0} = a(1 - a) .$	 M1	1 10		
			The line crosses the y – axis at $(0, a)$ so the equation of the line is $y = a(a-1)x + a$	A1 [2]	1.1a 1.1b		
	(b)		The two straight lines are $y = b(b-1)x + b$ and $y = c(c-1)x + c$. These are parallel if b(b-1) = c(c-1) $\Rightarrow 0 = c^2 - b^2 + b - c$	M1	3.1a	Note that equation can be solved using CAS which is an acceptable method.	
			$\Rightarrow 0 = (c-b)(c+b) - (c-b)$ $\Rightarrow 0 = (c-b)(c+b-1)$ $\Rightarrow 0 = c+b-1 \text{ (since } c \neq b)$ $\Rightarrow c+b=1$	M1 A1 [3]	2.4 2.1		

Question	Answer	Marks	AOs		Guidance
(c)	a = 0.3	B1	1.1b	One mark for each branch of the curve, check for shape, asymptotes, max/min and quadrants and and	
		B1	1.1b	shape, asymptotes, max/min and quadrants and and points on the axes. Note that question requires 'sketch'.	
		[2]			

(Questio	n	Answer	Marks	AOs		Guidance
	(d)		Let $f(x, y, a) = a(a-1)x - y + a$.	M1	3.1 a		
			The envelope is the set of points for which,				
			simultaneously $f(x, y, a) = 0$ and				
			$\frac{\partial f}{\partial a}(x, y, a) = 0$, for some value of a .				
			$f(x, y, a) = a^2 x - ax - y + a$				
			$\Rightarrow \frac{\partial f}{\partial a} = 2ax - x + 1$	M1	1.1		
			$\frac{\partial f}{\partial a}(x, y, a) = 0$ implies that $a = \frac{x-1}{2x}$ (note x	M1	1.1		
			not zero),				
			If, in addition, $f(x, y, a) = 0$ then	M1	2.2a		
			$0 = \left(\frac{x-1}{2y}\right) \left(\frac{x-1}{2y}-1\right) x - y + \frac{x-1}{2y}$				
			$\Rightarrow y = \frac{x-1}{x} \left(\frac{-1-x}{x}+1\right) \text{ oe isw}$	A1	2.1	This is awarded for any correct expression with y in terms of x explicitly.	
			2x(2)	[5]			
						Might also see $y = -\frac{(x-1)^2}{4x}$ or $y = \left(\frac{x-1}{2x}\right)\left(\frac{1-x}{2}\right)$	
						for example.	

3	(a)	(i)				Pseudo code accepted, condone lack of syntax, give reasonable BOD on possible transcription errors	
			Appropriate structure program Loop with correct range dependent on m, n.	M1 M1	3.3 2.1	Example code for Python def hcf(m,n): k = min(m,n) hcf=1	
			and tracking greatest one found. Fully correct program.	A1 [3]	2.5	for i in range(1,k+1): if m%i==0 and n%i==0: hcf=i return hcf print(hcf(m,n)	
		(ii)	(74333, 89817) = 49	B1 [1]	1.1	Set <i>m</i> = 74333 and <i>n</i> =89817 in the above.	

(b)	(i)				Pseudo code accepted, condone lack of syntax, give reasonable BOD on possible transcription errors	
		Appropriate structure program	M1	3.3	Example code for Python with hcf function as in 2(i) above.	
		Loop with correct range and counts number of values coprime to k.	M1	2.1	<pre>def phi(k): count = 0 for i in range(1 k);</pre>	
		Fully correct programme	A1 [3]	2.5	if hcf(i,k)==1: count = count + 1 return count print(phi(k))	
	(ii)	$\varphi(128) = 64$ and $\varphi(1000) = 400$	B1 B1 [2]	1.1 1.1		
	(iii)	$\varphi(2^n) = 2^{n-1}$. This is because all the odd	M1	2.1	Spotting odd/even property.	
		numbers less than 2^n are coprime to 2^n and all the even numbers less than 2^n are not. The are 2^n $^{-1}$ such odd numbers.	A1 [2]	3.2a	Correct value in terms of <i>n</i> .	
	(iv)	$\varphi(10^n) = 4 \times 10^{n-1}$. All numbers less than 10^n	M1	2.1	Spotting end digit property.	
		with final digit 1, 3, 7 and 9 are coprime to 10^n , any other number is not. There are four such numbers in 1, 2,,10, four in 11, 12,,20, four in 21,22,,30, and so on. There are 10^{n-1} such groups before reaching 10^n . So there are	M1	2.2a	Applying it across all numbers less than 10^n .	
		$4 \times 10^{n-1}$ number less than 10^n which are coprime to 10^n .	A1 [3]	3.2a	Correct value in terms of <i>n</i> .	

(c)	(i)	F(5) = 9, the corresponding fractions are	B1	1.1		
		1 1 1 2 1 3 2 3 4				
		$\overline{5}, \overline{4}, \overline{3}, \overline{5}, \overline{2}, \overline{5}, \overline{3}, \overline{4}, \overline{5}$				
		F(6) = 11, the corresponding fractions are				
		1 1 1 1 2 1 3 2 3 4 5	B1	1.1		
		$\overline{6}, \overline{5}, \overline{4}, \overline{3}, \overline{5}, \overline{2}, \overline{5}, \overline{3}, \overline{4}, \overline{5}, \overline{6}$	[2]			
	(ii)	Adding to the distinct fractions between 0 and 1	B 1	3.1 a		
		with denominator k, the only 'new' fractions				
		with denominator $k + 1$ have numerators which				
		are coprime to $k + 1$. Therefore there are	B1	2.4		
		$\varphi(k+1)$ of these.	[2]			
	(iii)		M1	3.1 a	By adding code such as	
		By (c)(11) required value is $\sum \varphi(k)$. By			def fracs(k):	
		k=1			count = 0	
		adapting previous program this is 3043.	A1	1.1	for i in range(1,k+1):	
			[2]		count = count + phi(i)	
					return count	
					print(fracs(100))	

4	(a)	(i)	Solution is $y = \ln(x+1) - \frac{x}{2}$	B1	1.1a	
				[1]		
		(ii)	3	B1	1.1	
			2 1 1			
			$y = \ln(x+1) - \frac{\pi}{2}$			
			0 1 2 3 4 5 6			
			-2	[1]		
		(iii)	With $y = \ln(x+1) - \frac{x}{2}$, $\frac{dy}{dx} = \frac{1}{x+1} - \frac{1}{2}$.	M 1	1.1a	
			Solving $\frac{dy}{dx} = 0$ gives $x = 1$. When $x = 1$,			
			$y = \ln(2) - \frac{1}{2}$	A1 [2]	1.1	
	(b)	(i)	Fig 4 .1, <i>a</i> is around 0.5	B1 [1]	1.1	

Y436/01

Mark Scheme

(ii)	Fig 4 .2. <i>a</i> is around 1	B1 [1]	1.1		
(iii)	Fig 4.1 $\begin{array}{c} 1.2 \\ 1.$	B1	1.1	Sufficient to see slight downturn as x increases and only stationary pt is the maximum	

	(iv)	Fig 3.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	B1 [2]	1.1	Sufficient to be increasing.	
	(v)	One is increasing for the values of <i>x</i> shown. The other has a stationary point (local maximum).	B1 [1]	1.2	Either comment will do. Allow 'one intersects the x-axis (eventually), the other doesn't.'	

Y43	6/01
-----	------

(c)	(i)				Give reasonable BOD on	
					possible transcription errors and	
					consider correct answers to	
					4(c)(ii), 4(c)(iii), 4(c)(iv) as	
					evidence of correct formulae in	
					the spreadsheet.	
		A1 contains 0				
		B1 contains 0			Allows for a and b to be varied	
		11 contains 0.1 (the value of h)	B 1	3.1 a	Anows for <i>u</i> and <i>n</i> to be varied.	
		K I contains a (the value of a)	D1	2.1.	Cols for x and y	
		CI = \$1\$1*((I - 1)) + \$2%1*(TA))	БI	J. 1a	, ,	
		$A1)/(2^{(A1+1)})+SKS1^{A1AN(B1)}$	R1	3 19	Cols for k_1 and k_2	
		$DI = SISI^{(1)}$	DI	0.14		
		$(A1+3131))/(2^{*}(A1+3131+1))+3K31^{*}A1AN($	B 1	2.5	Formulae for x_{n+1} and y_{n+1}	
		B(+C(1))				
		$A2 = A1 + \Im \Im$ $B2 = -B1 + 0.5 * (C1 + D1)$				
		B2 = =B1+0.3*(C1+D1)	[4]			
	(jj)	Copy down Approximation to y when $r = 5.0$ with $a = 0.5$	R 1		Compation group to at logat 2 g f	
	(11)	using $h = 0.1$ is -0.249889 (to 6 d n)	DI	11	Correct answer to at least 5 s.1.	
		using # 0.115 0.219009 (to 0 d.p.)	[1]	101	of significant figures gives	
	(;;;;)	Approximation to when $x = 5.0$ with $a = 1$ using	[+] ₽1	11	of significant figures given.	
	(111)	Approximation to y when $x = 5.0$ with $a = 1$, using $b = 0.1$ is 3.160809 (to 6 d n.)	DI	1.1	Correct answer to at least 3 s.f.	
		n = 0.1 is 5.100007 (to 0 d.p.)	[1]		Must for correct for the number	
			[1]		of significant figures given.	

	(iv)	Using $a = 0.645$ (with $h = 0.1$) produces an	M1	3.1a		
		approximate solution which increases initially but then peaks and descreases.				
		Using $a = 0.655$ (with $h = 0.1$) produces an				
		approximate solution which increases indefinitely.	M1	3.1a		
		This is evidence that a^* is between 0.645 and				
		0.655.	M1	2.2a	Further investigation of other	
		This suggests that $a^* = 0.65$ to 2 d p			values of <i>h</i> and graphing software might be used to confirm this. This	
			A1 [4]	2.2b	should be awarded credit appropriately.	
					E.g here is solution with $a = 0.645$	
					And here is solution with $a = 0.655$	
					112) 112)	
					1 0 / - 1 x 2x x2 x 42 x 43 x 43 x 43 x 43 x 43 x	

Question	A01	A02	A03	Е	С	Α	
1(i)(A)	1			1			C1, C4
1(i)(B)	1	1		2			C4
1(i)(C)	1	1		1	1		C4
1(i)(D)	2			2			C9
1(i)(E)	2			2			C4, C9
1(ii)(A)	2			2			C4
1(ii)(B)		2	1	1	2		C4
1(ii)(C)	2			1	1		C9
1(ii)(D)	2	2	1			5	C9
2(i)(A)		2	1	2	1		T1, T5
2(i)(B)	1			1			T5
2(ii)(A)		2	1	2	1		T6
2(ii)(B)	2			1	1		T5, T6
2(ii)(C)		1	1	1	1		T5, T6
2(ii)(D)		2	1	1	1	1	T5, T6
2(iii)(A)	2			2			T5
2(iii)(B)		1	1			2	T5, T6
2(iii)(C)	1		1			2	T5, T6
3(i)(A)	1			1			C1
3(i)(B)	1			1			C1
3(i)(C)	2			2			C5
3(ii)(A)	2			2			C2, C6
3(ii)(B)	2			2			C6
3(ii)(C)	1				1		C6
3(iii)(A)		1	3		3	1	C7
3(iii)(B)	1				1		C7
3(iii)(C)	1				1		C7
3(iii)(D)		2	2			4	C6, C7, C8
Total	30	17	13	30	15	15	0.00

S&C marks: 1(ii)D 5 marks

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

