GCE

Further Mathematics B (MEI)

Y435/01: Extra pure

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
E	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 \& (a) \& From Lagrange's Theorem the order of any subgroup of G must be a factor of 8 and 6 is not a factor of 8 \& B1

[1] \& 2.4 \& Or "order of any subgroup of G (or an group of order 8) must be 1, 2 or 4 (or 8)" or "order of any subgroup must be a factor of the order of the group and 6 is not a factor of $8 "$. \& If referenced, Lagrange's Theorem does not have to be quoted provided that it is applied. So $\mathbf{B 1}$ for eg " 6 is not a factor of 8 so by Lagrange's Theorem there can be no subgroup of G of order 6 " but B0 for eg "By Lagrange's Theorem there can be no subgroup of G of order $6 "$.

\hline 2 \& (b) \& | $g^{2}\left(\text { or } g^{6}\right)$ |
| :--- |
| $g^{6}\left(\right.$ or $\left.g^{2}\right)$ and no other | \& | B1 |
| :--- |
| B1 |
| [2] | \& \[

2.2 a
\]

$$
2.2 \mathrm{a}
$$ \& \& May see eg $g g$ or $g \circ g$ used here and/or throughout. Allow any multiplicative notation and any symbol for a binary operation.

\hline 2 \& (c) \& $$
\begin{aligned}
& \hline e \leftrightarrow 0 \\
& g \leftrightarrow 1, g^{2} \leftrightarrow 2, g^{3} \leftrightarrow 3, g^{4} \leftrightarrow 4, g^{5} \leftrightarrow 5, g^{6} \leftrightarrow 6, g^{7} \leftrightarrow 7 \\
& g \leftrightarrow 3, g^{2} \leftrightarrow 6, g^{3} \leftrightarrow 1, g^{5} \leftrightarrow 7, g^{6} \leftrightarrow 2, g^{7} \leftrightarrow 5 \\
& g \leftrightarrow 5, g^{2} \leftrightarrow 2, g^{3} \leftrightarrow 7, g^{5} \leftrightarrow 1, g^{6} \leftrightarrow 6, g^{7} \leftrightarrow 3 \text { and } \\
& g \leftrightarrow 7, g^{2} \leftrightarrow 6, g^{3} \leftrightarrow 5, g^{5} \leftrightarrow 3, g^{6} \leftrightarrow 2, g^{7} \leftrightarrow 1
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 2.2 \mathrm{a} \\
& 2.2 \mathrm{a} \\
& 2.2 \mathrm{a} \\
& 2.2 \mathrm{a}
\end{aligned}
$$

\] \& | Only needs to be seen once. |
| :--- |
| Any one. |
| Any other. |
| Other two. Ignore repeats. | \& $g^{4} \leftrightarrow 4$ does need not be seen again $g^{4} \leftrightarrow 4$ does need not be seen again

\hline \& \& | Alternative method: $e \leftrightarrow 0$ |
| :--- |
| Either $g \leftrightarrow 1$ or $g \leftrightarrow 3$ or $g \leftrightarrow 5$ or $g \leftrightarrow 7$ $\begin{aligned} & g \leftrightarrow 1, g^{2} \leftrightarrow 2, g^{3} \leftrightarrow 3, g^{4} \leftrightarrow 4, g^{5} \leftrightarrow 5, g^{6} \leftrightarrow 6, g^{7} \leftrightarrow 7 \\ & g \leftrightarrow 3, g^{2} \leftrightarrow 6, g^{3} \leftrightarrow 1, g^{5} \leftrightarrow 7, g^{6} \leftrightarrow 2, g^{7} \leftrightarrow 5 \text { and } \\ & g \leftrightarrow 5, g^{2} \leftrightarrow 2, g^{3} \leftrightarrow 7, g^{5} \leftrightarrow 1, g^{6} \leftrightarrow 6, g^{7} \leftrightarrow 3 \text { and } \\ & g \leftrightarrow 7, g^{2} \leftrightarrow 6, g^{3} \leftrightarrow 5, g^{5} \leftrightarrow 3, g^{6} \leftrightarrow 2, g^{7} \leftrightarrow 1 \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 | \& \& Only needs to be seen once Giving all 4 possible isomorphism options for any generator of G (ie g, g^{3}, g^{5} or g^{7}) Completing the specification of any one isomorphism Other three. Ignore repeats. \& $g^{4} \leftrightarrow 4$ does need not be seen again

\hline \& \& \& [4] \& \& \&

\hline
\end{tabular}

3	(d)		$\begin{aligned} & \left(\begin{array}{ccc} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right) \\ & \left(\begin{array}{ccc} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right)^{-1}=\frac{1}{10}\left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{array}\right) \text { oe } \end{aligned}$	M1 A1FT	3.1a	Forming matrix of their eigenvectors, \mathbf{E}. BC. Finding inverse of their matrix of eigenvectors.	May be in decimal form: $\left(\begin{array}{ccc} -0.2 & -0.6 & 0.4 \\ -0.5 & -0.5 & 0.5 \\ 0.1 & 0.3 & 0.3 \end{array}\right)$
			$\begin{aligned} & \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{array}\right)^{n}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 6^{n} \end{array}\right) \\ & \left(\begin{array}{ccc} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right)\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 6^{n} \end{array}\right) \frac{1}{10}\left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{array}\right) \end{aligned}$	B1 M1	3.1a	Matrix of eigenvalues must be consistent with matrix of eigenvectors. Allow 1^{n}. Forming $\mathbf{E} \Lambda^{n} \mathbf{E}^{-1}$. Can be awarded if Λ^{n} incorrect or uncalculated but eigenvectors must be in same order as eigenvalues.	
			$\begin{aligned} & \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 6^{n} \end{array}\right)\left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{array}\right)= \\ & \left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 \times 2^{n} & -5 \times 2^{n} & 5 \times 2^{n} \\ 6^{n} & 3 \times 6^{n} & 3 \times 6^{n} \end{array}\right) \end{aligned}$	M1	1.1	Proper attempt to multiply either the first two or the last two (of 3) in the correct order (with or without $\frac{1}{10}$).	$\begin{aligned} & \left(\begin{array}{ccc} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right)\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 6^{n} \end{array}\right)= \\ & \left(\begin{array}{ccc} 3 & -3 \times 2^{n} & 6^{n} \\ -2 & 2^{n} & 6^{n} \\ 1 & 0 & 2 \times 6^{n} \end{array}\right) \end{aligned}$
			$\begin{aligned} & \frac{1}{10}\left(\begin{array}{ccc} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right)\left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 \times 2^{n} & -5 \times 2^{n} & 5 \times 2^{n} \\ 6^{n} & 3 \times 6^{n} & 3 \times 6^{n} \end{array}\right)= \\ & \frac{1}{10}\left(\begin{array}{ccc} -6+15 \times 2^{n}+6^{n} & -18+15 \times 2^{n}+3 \times 6^{n} & 12-15 \times 2^{n}+3 \times 6^{n} \\ 4-5 \times 2^{n}+6^{n} & 12-5 \times 2^{n}+3 \times 6^{n} & -8+5 \times 2^{n}+3 \times 6^{n} \\ -2+2 \times 6^{n} & -6+6^{n+1} & 4+6^{n+1} \end{array}\right) \end{aligned}$	A1	1.1	or $\frac{1}{10}\left(\begin{array}{ccc} 3 & -3 \times 2^{n} & 6^{n} \\ -2 & 2^{n} & 6^{n} \\ 1 & 0 & 2 \times 6^{n} \end{array}\right)\left(\begin{array}{ccc} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{array}\right)=$ etc. Condone 6×6^{n} unsimplified.	
				[6]			

4	(a)	$\begin{aligned} & \text { CF: } u_{n+2}-3 u_{n+1}-10 u_{n}=0 \text { and } u_{n}=\alpha r^{n} \\ & \Rightarrow r^{2}-3 r-10=0 \\ & \Rightarrow r=5 \text { or } r=-2 \\ & \text { CF is } \alpha 5^{n}+\beta(-2)^{n} \end{aligned}$ Trial function: $u_{n}=a n+b$ $\begin{aligned} & a(n+2)+b-3[a(n+1)+b]-10(a n+b) \\ & =24 n-10 \\ & \Rightarrow(a-3 a-10 a)=24 \\ & \text { and } 2 a+b-3 a-3 b-10 b=-10 \end{aligned}$ $a=-2$ and $b=1$ so GS is $u_{n}=1-2 n+\alpha 5^{n}+\beta(-2)^{n}$	$\begin{gathered} \text { M1 } \\ \text { A1FT } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \\ & 1.1 \mathrm{a} \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	Deriving the auxiliary equation (allow one sign error). FT correct roots of their AE to form CF (do not ISW). Correct form. Substituting their form correctly into recurrence relation. Deriving two equations in a and b using a correct method (eg comparing coefficients) Full form of GS, including $u_{n}=$, must be seen.	Condone missing brackets around -2 unless misused. Other forms eg $a n^{2}+b n+c$ are allowable provided $a=0$ derived.
4	(b)	$\begin{aligned} & \text { Either: } n=0=>1+\alpha+\beta=6 \\ & \text { or: } n=1=1-2+5 \alpha-2 \beta=10 \\ & \alpha+\beta=5 \text { and } 5 \alpha-2 \beta=11 \\ & \Rightarrow 2 \alpha+2 \beta=10=>7 \alpha=21 \\ & \\ & \alpha=3 \text { and } \beta=2 \text { so } \\ & u_{n}=1-2 n+3 \times 5^{n}+2 \times(-2)^{n} \end{aligned}$	M1 M1 A1FT [3]	1.1 1.1 1.1	Substituting $n=0$ or $n=1$ in their GS to derive an equation in $\alpha \& \beta$. Deriving 2 equations from substituting $n=0 \& 1$, at least one correct for their GS, and attempting to solve. FT from their GS. Allow nonembedded values if GS seen in (a). Do not ISW.	This mark can be awarded if one of their equations is wrong. Attempt to solve can be implied by correct answer or valid algebra but incorrect answer with no working M0
4	(c)	From recurrence relation: $\begin{aligned} u_{2} & =3 u_{1}+10 u_{0}+24 \times 0-10 \\ & =3 \times 10+10 \times 6-10=80 \end{aligned}$ From particular solution: $\begin{aligned} u_{2} & =1-2 \times 2+3 \times 5^{2}+2 \times(-2)^{2} \\ & =1-4+75+8=80 \end{aligned}$	B1 [1]	2.5	Both expressions properly seen (ie it must be clear that candidates are correctly using two different methods to find u_{2}).	

4	(d)	$v_{n}=\frac{1-2 n}{p^{n}}+3\left(\frac{5}{p}\right)^{n}+2\left(\frac{-2}{p}\right)^{n}$ If $\|p\|<5$ then $v_{n} \rightarrow \infty$ while if $\|p\|>5$ then $v_{n} \rightarrow 0 \text { as } n \rightarrow \infty$ $\begin{aligned} & p=5 \\ & q=3 \end{aligned}$	M1 B1 A1 A1 [4]	3.1a 2.1 $\begin{aligned} & 2.2 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$	Writing v_{n} in a form which enables the limit to be deduced. Convincing argument. FT for GS of the form: $c-d n+\alpha s^{n}+\beta t^{n}$ (where $\|s\|>\|t\|$). FT. $p=s$ (must be a number). FT. $q=\alpha$ (must be a number).	At most one of c and d is 0 . s and t are not equal and both not 0 . Both α and β are not 0 . Either $\|s\|>1$ or $\|t\|>1$ (or both). A0 If $s=-t$. A0 If $s=-t$. If M0 then $\mathbf{S C} \mathbf{2}$ for $p=5, q=3$.

6	(a)	$\begin{aligned} & \frac{1}{(q+1)}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\ldots \\ & <\frac{1}{(q+1)}+\frac{1}{(q+1)^{2}}+\frac{1}{(q+1)^{3}}+\ldots \\ & =\frac{\frac{1}{q+1}}{1-\frac{1}{q+1}} \\ & =\frac{1}{q+1-1}=\frac{1}{q} \end{aligned}$	M1 A1 A1 [3]	2.1 2.1 2.1	Correct statement that given series is less than an infinite GP (could be eg $\frac{1}{q}+\frac{1}{q^{2}}+\ldots$ or $\frac{1}{3}+\frac{1}{3^{2}}+\ldots$). FT on their $\frac{a}{1-r}$. AG. Intermediate step must be seen.	
6	(b)	$q \geq 1 \Rightarrow \frac{1}{q} \leq 1$ But $S<\frac{1}{q} \Rightarrow S<1$; clearly $S>0$ so $0<S<1$ so $S \notin \square$.	M1 A1 [2]	$\begin{aligned} & 2.2 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$	AG. $S>0$ must be stated but need not be justified.	Since $0<\frac{1}{q} \leq 1$ and $S<\frac{1}{q}$ then $0<S<1$ and $\therefore S \notin \square$.
6	(c)	$\begin{aligned} & \mathrm{e}=\sum_{r=0}^{\infty} \frac{1}{r!}=\frac{p}{q} \Rightarrow \mathrm{e} q!=\sum_{r=0}^{\infty} \frac{q!}{r!}=p(q-1)! \\ & \therefore p(q-1)!=\sum_{r=0}^{\infty} \frac{q!}{r!}=\sum_{r=0}^{q} \frac{q!}{r!}+\sum_{r=q+1}^{\infty} \frac{q!}{r!} \\ & =q!+q!+\frac{q!}{2!}+\ldots+\frac{q!}{q!}+S \\ & =2 q!+q(q-1) \ldots \times 3+q(q-1) \ldots \times 4+\ldots+1+S \\ & p(q-1)!\text { and } q!+q!+\frac{q!}{2!}+\ldots+1 \text { are all integers } \end{aligned}$	M1 M1 A1	3.1a 2.1 3.2a	Multiplying both sides by q ! No need to mention $q \geq 1$ in this part. Rewriting to a form in which it is clear that every term on both sides, except S, is an integer. AG	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

