GCE

Further Mathematics A

Y541/01: Pure Core 2

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
BP	Blank Page
NBOD	Benefit of doubt not given
Highlighting	
Other abbreviations mark scheme	Meaning
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

Question			Answer	Marks	AO	Guidance	
2	(a)	(i)	$\begin{aligned} & \text { DR } \\ & 3 z_{1}+4 z_{2}=3(3-7 \mathrm{i})+4(2+4 \mathrm{i})=17-5 \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	1.1		
		(ii)	$\begin{aligned} & \text { DR } \\ & z_{1} z_{2}=(3-7 \mathrm{i})(2+4 \mathrm{i})=6+12 \mathrm{i}-14 \mathrm{i}-28(-1) \\ & =34-2 \mathrm{i} \end{aligned}$	M1 A1 [2]	1.1 1.1	Attempted expansion with $\mathrm{i}^{2}=-1$ used and at least 3 correctly expanded terms	-28(-1) can be simply +28
		(iii)	DR $\begin{aligned} & \frac{z_{1}}{z_{2}}=\frac{3-7 \mathrm{i}}{2+4 \mathrm{i}}=\frac{3-7 \mathrm{i}}{2+4 \mathrm{i}} \times \frac{2-4 \mathrm{i}}{2-4 \mathrm{i}} \\ & =\frac{6-12 \mathrm{i}-14 \mathrm{i}-28}{4+16}=\frac{-22-26 \mathrm{i}}{20}=-\frac{11}{10}-\frac{13}{10} \mathrm{i} \end{aligned}$	M1 A1 [2]	1.1 1.1	Multiplying top and bottom by (real multiple of) conjugate of bottom Must see some evidence of expansion	Allow $\frac{-11-13 \mathrm{i}}{10}$ or $-\frac{11+13 \mathrm{i}}{10}$
	(b)		DR $\sqrt{3^{2}+(-7)^{2}} \text { or } \tan ^{-1}\left(\frac{-7}{3}\right)$ $\left\|z_{1}\right\|=\sqrt{58}$ or awrt 7.62 or $\arg z_{1}=\operatorname{awrt}-1.17$ or 5.12 rads $\begin{aligned} & z_{1}=\sqrt{58} \operatorname{cis}(-1.17) \text { or } z_{1}=\sqrt{58} \mathrm{e}^{-1.17 \mathrm{i}} \text { or } \\ & z_{1}=\sqrt{58}(\cos (-1.17)+\mathrm{i} \sin (-1.17)) \text { or } \\ & {[\sqrt{58},-1.17]} \end{aligned}$	M1 A1 A1 [3]	1.1 1.1 2.5	Explicit working must be seen Must be in correct form with $\sqrt{ } 58$ exact and could be awrt 5.12 instead of -1.17 .	Other trig calculations could be sufficient for M1 provided that these are being used to find the argument. Do not condone degrees Condone round brackets

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& \& \& \multicolumn{2}{|c|}{Guidance} \\
\hline 3 \& (a) \& \[
\begin{aligned}
\& \left(\left(\begin{array}{c}
1 \\
-3 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)\right) \cdot\left(\begin{array}{c}
2 \\
-5 \\
-3
\end{array}\right)=4 \\
\& 2+15-9+\lambda(6-10+6)=4 \\
\& 8+2 \lambda=4=>2 \lambda=-4=\lambda=-2 \text { so } \\
\& \mathbf{r}=\left(\begin{array}{c}
1 \\
-3 \\
3
\end{array}\right)+-2\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-5 \\
-7 \\
7
\end{array}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
1.1 \\
1.1 \\
1.1
\end{tabular} \& \begin{tabular}{l}
Substituting the expression for a point on the line into the equation of the plane \\
Dotting out to form and solve equation in \(\lambda\)
\end{tabular} \& Condone coordinates \\
\hline \& (b) \& \[
\begin{aligned}
\& \frac{\left(\begin{array}{c}
2 \\
-5 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)}{\sqrt{4+25+9} \sqrt{9+4+4}} \\
\& =\frac{6-10+6}{\sqrt{38} \sqrt{17}}=\frac{2}{\sqrt{646}}=0.07868 \ldots \\
\& \theta=\text { awrt } 85.5 \ldots .^{\circ} \text { soi } \\
\& \left(\phi=90^{\circ}-85.48 \ldots{ }^{\circ}=\right) \text { awrt } 4.51^{\circ}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
[3]
\end{tabular} \& 1.1

1.1

1.1 \& | BC. Using $\cos \theta=\frac{\mathbf{a . b}}{\|\mathbf{a}\|\|\mathbf{b}\|}$ |
| :--- |
| Can be implied by correct final answer | \& May see $\sin \phi=\frac{\mathbf{a . b}}{|\mathbf{a}||\mathbf{b}|}$ Or use of cross product or $1.49 \ldots$ rads or 0.0788 rads

\hline
\end{tabular}

Question		Answer	Marks M1	$\begin{gathered} \hline \mathbf{A O} \\ \hline 2.1 \end{gathered}$	Guidance	
5	(a)	DR $\begin{aligned} & \text { RHS }=2 \cosh ^{2} x-1=2\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-1 \\ & =2\left(\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{4}\right)-1=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{2} \\ & =\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}=\cosh 2 x=\text { LHS } \end{aligned}$			Uses correct exponential form in an attempt at proof	Proof must be complete
	(b)	DR $2 \cosh ^{2} x-1=3 \cosh x+1$ $=>2 \cosh ^{2} x-3 \cosh x-2=0$ $(2 \cosh x+1)(\cosh x-2)=0$ $\begin{aligned} & \cosh x=2 \text { or }-1 / 2 \\ & \cosh x \geq 1 \text { so } \neq-1 / 2 \end{aligned}$ $\begin{aligned} & x=\cosh ^{-1} 2=\ln (2+\sqrt{3}) \\ & x=\ln (2-\sqrt{3}) \end{aligned}$	M1 M1 A1 A1 A1 A1 [6]	3.1a 1.1 1.1 2.3 1.1 1.1	Use of identity in (a) to leave a three term quadratic equation in just $\cosh x$ Attempt to solve eg $\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times(-2)}}{2 \times 2}$ Justification must be seen and must contain no incorrect statements For either correct answer seen Both correct values for x	or $2\left(\cosh x-\frac{3}{4}\right)^{2}-\frac{9}{8}-2=0$ Or solves quadratic BC Or $x=-\ln (2+\sqrt{3})$ Mark final answer

6		Answer	Marks	AO	Guidance	
	(a)	DR A shear which leaves the x-axis invariant and which transforms the point $(0,1)$ to the point $(2,1)$.	B1 [1]	2.2a	Or any useful point transformed to its image	not "scale factor" or sf
	(b)	DR $\operatorname{det} \mathbf{A}=1 \times 1-0 \times 2=1$ and this is the area scale factor	B1 [1]	2.4	Both	Detailed calculation must be shown
	(c)	$\begin{aligned} & \text { DR } \\ & \left(\begin{array}{ll} 1 & 0 \\ 3 & 1 \end{array}\right) \text { seen } \\ & \left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right)\left(\begin{array}{ll} 1 & 0 \\ 3 & 1 \end{array}\right)=\left(\begin{array}{ll} 7 & 2 \\ 3 & 1 \end{array}\right) \\ & \left(\begin{array}{ll} 1 & 0 \\ 0 & p \end{array}\right)\left(\begin{array}{ll} 7 & 2 \\ 3 & 1 \end{array}\right) \\ & =\left(\begin{array}{cc} 7 & 2 \\ 3 p & p \end{array}\right) \Rightarrow p=7 \end{aligned}$	B1 B1 M1 A1 [4]	3.1a 1.1 1.1 1.1	BC Correct form for stretch multiplied into their matrix in either order Correct multiplication	

Question		Answer	Marks	AO	Guidance	
7	(a)	DR $\begin{aligned} & \frac{x^{3}+x^{2}+9 x-1}{x^{3}+x^{2}+4 x+4} \equiv \frac{x^{3}+x^{2}+4 x+4+5 x-5}{x^{3}+x^{2}+4 x+4} \\ & =1+\frac{5 x-5}{x^{3}+x^{2}+4 x+4} \end{aligned}$ So $A=1, B=5$ and $C=-5$	B1 $[1]$	3.1a	Attempt to divide out improper fraction. Could be by symbolic division or other valid method (eg comparing coefficients or substitution of values for x)	Allow embedded answers
	(b)	DR $\begin{aligned} & x^{3}+x^{2}+4 x+4=(x+1)\left(x^{2}+4\right) \\ & \frac{5 x-5}{x^{3}+x^{2}+4 x+4}=\frac{D}{x+1}+\frac{E x+F}{x^{2}+4} \\ & D\left(x^{2}+4\right)+(x+1)(E x+F)=5 x-5 \\ & x=-1 \Rightarrow 5 D=-10 \Rightarrow D=-2 \\ & x=0 \Rightarrow-2-F=-5 \Rightarrow F=3 \\ & x^{2}: D+E=0 \Rightarrow E=2 \\ & 1-\frac{2}{x+1}+\frac{2 x+3}{x^{2}+4} \end{aligned}$	B1 M1 A1 A1 A1 [5]	3.1a 1.2 1.1 1.1 1.1	Correct factorisation of cubic seen in working Correct form for partial fractions equated to their remainder rational fraction from (a). Follow through their division and factorisation. Or equivalent to find D correctly.	Could be from improper fraction Allow ft A1 for second and third coefficients found. Or $1-\frac{2}{x+1}+\frac{2 x}{x^{2}+4}+\frac{3}{x^{2}+4}$

Question		Answer	Marks	AO	Guidance	
7	(c)	DR $\int_{0}^{2} \frac{x^{3}+x^{2}+9 x-1}{x^{3}+x^{2}+4 x+4} \mathrm{~d} x=\int_{0}^{2} 1-\frac{2}{x+1}+\frac{2 x}{x^{2}+4}+\frac{3}{x^{2}+4} \mathrm{~d} x$	*M1	3.1a	Split term with $x^{2}+4$ in denominator and $a x+b$ in numerator	
		$=\left[x-2 \ln (x+1)+\ln \left(x^{2}+4\right)+\frac{3}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$	dep*M1	1.1	Correctly integrate their expression (ignore limits)	
		$\left(2-2 \ln 3+\ln 8+\frac{3 \pi}{8}\right)-\ln 4$	M1	1.1	Correctly substitute limits to produce exact values and evaluate their $\tan ^{-1}$ term	
		$2+\ln \left(\frac{2}{9}\right)+\frac{3}{8} \pi$	A1 [4]	1.1	$a=2, b=\frac{2}{9}, c=\frac{3}{8}$	

8	(a)	$\begin{aligned} & F=m a=2 \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \mathrm{e}^{-2 t}-k v \\ & t=\ln 2, v=0.5, F=0=>0=1-0.5 \mathrm{k} \\ & k=2 \Rightarrow 2 \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \mathrm{e}^{-2 t}-2 v=>\frac{\mathrm{d} v}{\mathrm{~d} t}+v=2 \mathrm{e}^{-2 t} \end{aligned}$	M1 M1 A1 [3]	3.3 2.2a 1.1	Use of NII with m and a replaced and with 2 forces, the given force and $k v$ Use of given conditions to derive an equation in k AG	$F=m a$ can be implicit here Can be done first Complete argument including $F=m a$
	(b)	$\begin{aligned} & \mathrm{IF}=\mathrm{e}^{\int \mathrm{d} t}=\mathrm{e}^{t} \\ & \mathrm{e}^{t} \frac{\mathrm{~d} v}{\mathrm{~d} t}+\mathrm{e}^{t} v=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t} v\right)=\mathrm{e}^{t} \times 2 \mathrm{e}^{-2 t} \\ & \mathrm{e}^{t} v=\int 2 \mathrm{e}^{-t} \mathrm{~d} t=-2 \mathrm{e}^{-t}+c \\ & t=0, v=0=>c=2 \\ & v=2 \mathrm{e}^{-t}-2 \mathrm{e}^{-2 t} \end{aligned}$	$* B 1$ $* M 1$ A1 dep*M1 A1 $[5]$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \\ & 3.4 \\ & 3.4 \end{aligned}$	Multiplying by IF and writing LHS as an exact derivative "+ c " required Use of initial conditions to derive a value for c	Or CF Or subst correct PI into DE $\text { Or GS } v=A e^{-t}-2 e^{-2 t}$ Or using alternative boundary condition
	(c)	As $t \rightarrow \infty, v \rightarrow 0$ So speed starts at 0 and ends at 0 (and is continuous and positive between) so must reach a maximum somewhere in $t>0$	M1 A1 [2]	$\begin{aligned} & \hline 3.4 \\ & 2.4 \end{aligned}$		
	(d)	v is max when $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ so $t=\ln 2$ So $v_{\text {max }}=0.5$ (given) (or $\left.v_{\max }=2 \mathrm{e}^{-\ln 2}-2 \mathrm{e}^{-2 \ln 2}=1-\frac{2}{4}=\frac{1}{2}\right)$	M1 A1 [2]	$2.2 \mathrm{a}$ 3.4	Deducing time when v is maximum	Or by finding expression for $\frac{\mathrm{d} v}{\mathrm{~d} t}$ and solving $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$

Question		Answer	Marks	AO	Guidance	
9	(b)	Basis case: $n=1$: $\mathbf{A}^{1}=\left(\begin{array}{cc}2^{1} & 3 \times 1 \times 2^{0} \\ 0 & 2^{1}\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right)=\mathbf{A}$ so true for $n=1$	B1	2.1	Allow this mark even if the conjecture is wrong, provided that it works for $n=1$	
		Assume true for $n=k$ $\begin{aligned} & \text { ie } \mathbf{A}^{k}=\left(\begin{array}{cc} 2^{k} & 3 k \times 2^{k-1} \\ 0 & 2^{k} \end{array}\right) \\ & \mathbf{A}^{k+1}=\mathbf{A}^{k} \mathbf{A}=\left(\begin{array}{cc} 2^{k} & 3 k \times 2^{k-1} \\ 0 & 2^{k} \end{array}\right)\left(\begin{array}{ll} 2 & 3 \\ 0 & 2 \end{array}\right) \end{aligned}$	M1	2.1	Must have statement in terms of some other variable than n. Conjecture need not be correct.	
		$\begin{aligned} & =\left(\begin{array}{cc} 2^{k+1} & 3 \times 2^{k}+3 k \times 2^{k} \\ 0 & 2^{k+1} \end{array}\right) \\ & =\left(\begin{array}{cc} 2^{k+1} & 3(k+1) \times 2^{k} \\ 0 & 2^{k+1} \end{array}\right) \end{aligned}$	M1	2.2a	Uses inductive hypothesis properly \& expands	
		So true for $n=k \Rightarrow$ true for $n=k+1$. But true for $n=1$. So true for all positive integer n	A1	2.4	AG. Manipulating terms correctly and convincingly to obtain required form. Some intermediate working must be seen and a clear conclusion must be given for the induction process.	A formal proof by induction is required for full marks.

Question		Answer	Marks M1	$\begin{gathered} \hline \mathbf{A O} \\ \hline \\ 1.1 \end{gathered}$	Guidance	
10	(a)	DR $\begin{aligned} & \mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=(1+x)+\left(\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right) \\ & x>0 \Rightarrow \frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots>0 \\ & \Rightarrow \mathrm{e}^{x}>1+x \end{aligned}$			Quoting and using the Maclaurin series AG. Result with sufficient justification	
	(b)	DR $t=x+1 \Rightarrow \mathrm{e}^{t-1}>t \Rightarrow \frac{\mathrm{e}^{t}}{\mathrm{e}}>t \Rightarrow \mathrm{e}^{t}>\mathrm{e} t$	B1 [1]	3.1a	AG	
	(c)	DR $\begin{aligned} & t=\frac{\pi}{\mathrm{e}}>1 \text { since } 2<\mathrm{e}<3 \text { and } \pi>3 \\ & \mathrm{e}^{\frac{\pi}{e}}>\mathrm{e} \times \frac{\pi}{\mathrm{e}}(=\pi) \\ & \Rightarrow \mathrm{e}^{\pi}>\pi^{\mathrm{e}}\left(\text { ie } \mathrm{e}^{\pi} \text { is greater }\right) \end{aligned}$	B1 M1 A1	3.1a 3.1a 1.1	Some justification that $t>1$ is required Substituting their choice into the inequality Answer without use of inequality in part (b) scores M0A0	
		Alternative method $\begin{aligned} & t=\ln \pi \\ & \mathrm{e}^{\ln \pi}>\mathrm{e} \ln \pi \\ & \mathrm{e}^{\ln \pi}>\mathrm{e} \ln \pi \\ & \pi>\ln \left(\pi^{\mathrm{e}}\right) \\ & \mathrm{e}^{\pi}>\pi^{\mathrm{e}} \end{aligned}$	B1 M1 A1		Some justification that $t>1$ is required	
			[3]			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

