Monday 18 October 2021 - Morning
 A Level Chemistry B (Salters)
 H433/03 Practical skills in chemistry

 Practical Insert

 Practical Insert
 Time allowed: 1 hour 30 minutes

INSTRUCTIONS

- Do not send this Insert for marking. Keep it in the centre or recycle it.

INFORMATION

- This document has 4 pages.

pH changes of solutions

A group of students record the pH of some solutions using a pH meter.
They then see what happens to the pH when they add water, acid and alkali to the solutions.

Requirements

The students are provided with the following, along with standard laboratory apparatus:

- stock solutions of the following:
- propanoic acid $0.50 \mathrm{moldm}^{-3}$
- sodium propanoate $0.50 \mathrm{moldm}^{-3}$
- sodium hydroxide $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$
- hydrochloric acid $0.050 \mathrm{moldm}^{-3}$.
- solid sodium propanoate
- distilled water
- pH meter
- electronic balance
- $100 \mathrm{~cm}^{3}$ beakers.

Method

Set up three beakers, each containing $30 \mathrm{~cm}^{3}$ of one of the solutions \mathbf{A}, \mathbf{B} and \mathbf{C} shown below.
A $0.50 \mathrm{moldm}^{-3}$ propanoic acid solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})$
B $\quad 0.50 \mathrm{moldm}^{-3}$ sodium propanoate solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}(\mathrm{aq})$
C $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid solution with 2.4 g of sodium propanoate dissolved in it.

- Gently place the pH meter into each solution in turn to measure the starting pH . Wash the pH meter with distilled water each time before placing it in the different solutions.
- Record the pH of each solution on addition of $20 \mathrm{~cm}^{3}$ of water.
- Take $30 \mathrm{~cm}^{3}$ of solution \mathbf{A} and add $20 \mathrm{~cm}^{3}$ of $0.050 \mathrm{moldm}^{-3}$ hydrochloric acid. Measure the pH .
- Take $30 \mathrm{~cm}^{3}$ of solution \mathbf{A} and add $20 \mathrm{~cm}^{3}$ of $0.050 \mathrm{moldm}^{-3}$ sodium hydroxide. Measure the pH .
- Repeat the last two bullet points for solutions B and C.
- Record your results in the table.

The students' results are shown in the table on the next page.

Results table

	Starting pH	pH after the addition of water, acid or alkali		
Solution (volume used $-30 \mathrm{~cm}^{3}$)		$\begin{aligned} & +20 \mathrm{~cm}^{3} \\ & \text { water } \end{aligned}$	$\begin{gathered} +20 \mathrm{~cm}^{3} \\ 0.050 \mathrm{~mol} \mathrm{dm}^{-3} \\ \mathrm{HCl}(\mathrm{aq}) \end{gathered}$	$\begin{gathered} +20 \mathrm{~cm}^{3} \\ 0.050 \mathrm{~mol} \mathrm{dm}^{-3} \\ \mathrm{NaOH}(\mathrm{aq}) \end{gathered}$
A $0.50 \mathrm{moldm}^{-3}$ propanoic acid solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})$	2.5	2.7	1.7	3.7
B $\quad 0.50 \mathrm{moldm}^{-3}$ sodium propanoate solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}(\mathrm{aq})$	9.3	9.2	6.0	12.5
C $\quad 0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of propanoic acid with 2.4 g of sodium propanoate dissolved in it.	5.1	5.1	5.1	5.2

OCR

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyrigh Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

