GCSE (9-1)

Mathematics

J560/06: Paper 6 (Higher tier)

General Certificate of Secondary Education

Mark Scheme for November 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor. These must be used whenever appropriate during your marking.

Annotation	Meaning
	Correct
BOD	Incorrect
FT	Benefit of doubt
$\mathbf{I S W}$	Follow through
M0	Ignore subsequent working (after correct answer obtained), provided method has been completed
$\mathbf{M 1}$	Method mark awarded 0
M2	Method mark awarded 1
$\mathbf{A 1}$	Method mark awarded 2
$\mathbf{B 1}$	Accuracy mark awarded 1
$\mathbf{B 2}$	Independent mark awarded 1
$\mathbf{M R}$	Independent mark awarded 2
$\mathbf{S C}$	Misread
\boldsymbol{A}	Special case
$\mathbf{B P}$	Omission sign
$\mathbf{S E E N}$	Blank page
	Seen

For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or \wedge) is sufficient, but not required.
For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Subject-Specific Marking Instructions

1. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working after correct answer obtained and applies as a default.
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- soi means seen or implied.
- dep means that the marks are dependent on the marks indicated. You must check that the candidate has met all the criteria specified for the mark to be awarded.
- with correct working means that full marks must not be awarded without some working. The required minimum amount of working will be defined in the guidance column and SC marks given for unsupported answers.

3. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.
4. Unless the command word requires that working is shown and the working required is stated in the mark scheme, then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, i.e. incorrect working is seen and the correct answer clearly follows from it.
5. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct. For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, e.g. FT $180 \times$ (their ‘ 37 ’ +16), or FT $300-\sqrt{ }($ their ' $52+72$ '). Answers to part questions which are being followed through are indicated by e.g. FT $3 \times$ their (a).
6. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (i.e. isw) unless the mark scheme says otherwise, indicated by the instruction 'mark final answer'.
7. In questions with a final answer line and incorrect answer given:
(i) If the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.
(ii) If the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation \checkmark next to the correct answer.
(iii) If the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded if there is no other method leading to the incorrect answer. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
8. In questions with a final answer line:
(i) If one answer is provided on the answer line, mark the method that leads to that answer. A correct step, value or statement that is not part of the method that leads to the given answer should be awarded M0 and/or B0.
(ii) If more than one answer is provided on the answer line and there is a single method provided, award method marks only.
(iii) If more than one answer is provided on the answer line and there is more than one method provided, award marks for the poorer response unless the candidate has clearly indicated which method is to be marked.
9. In questions with no final answer line:
(i) If a single response is provided, mark as usual.
(ii) If more than one response is provided, award marks for the poorer response unless the candidate has clearly indicated which response is to be marked.
10. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads. If a candidate corrects the misread in a later part, do not continue to follow through, but award \mathbf{A} and \mathbf{B} marks for the correct answer only.
11. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
12. Ranges of answers given in the mark scheme are always inclusive.
13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
14. If in any case the mark scheme operates with considerable unfairness consult your Team Leader.

Question		Answer	Marks	Part marks and guidance	
1	(a)	5120	1		
	(b)	Topozero, Tana, Mweru, Ladoga, Victoria or 986, 3200, 5120, 18 100, 68900 oe in standard form	2	B1 for Topozero as smallest or Victoria as largest or all in correct reverse order	$\begin{aligned} & 9.86 \times 10^{2}, 3.20 \times 10^{3}, 5.12 \times 10^{3} \\ & 1.81 \times 10^{4}, 6.89 \times 10^{4} \text { condoning } \\ & \text { superfluous zeros and slip in index } \end{aligned}$
	(c)	1.5×10^{4} nfww isw	4	B3 for 15000 oe or 1.49[0..] $\times 10^{4}$ or B2 for 14900 oe or M1 for figs 181 - figs 32 If $\mathbf{0}$ scored SC1 for their value correctly rounded to 2 significant figures	eg 15000 may be 15×10^{3} Subtraction may be implied by figs 15 or figs 149 Their unrounded value must be seen
2	(a)	285	2	M1 for $760 \div(2+3+3)$ soi by 95	
	(b)	24	2	M1 for $\frac{2}{3} \times 36$ oe	Allow (0.66 or 0.7) $\times 36$ for M1 only
3		$2 x+7$ as final answer	2	B1 for each part or M1 for $3 x+6$ or $-x+1$	
4	(a)	Triangle at (-8, 6), (-8, 2), (0, 6)	2	B1 for reflection in $x=k$ or in $y=0$	Mark intention, condoning freehand

Question			Answer	Marks	Part marks and guidance	
	(b)		Enlargement $\begin{aligned} & \frac{1}{4} \text { or } 0.25 \\ & (0,-6) \end{aligned}$	3	B1 for each element	Marks spoilt if extra transformations Condone omission of brackets Accept centre as a vector
5	(a)		0.14, 0.09, (0.19), 0.2[0], 0.13, 0.25	2	B1 for three or four correct relative frequencies in the correct place	Accept fractions
	(b)	(i)	[Unbiased dice] would have each [rf=] 0.16-0.17 or [Unbiased dice] would have each [f=] 50 or comment about very unequal [relative] frequencies and implied comparison	1		Accept "about 0.16" Accept "about 50" Not enough to say one number was rolled the most. Must say 6 [and 4] or some numbers are much higher or 2 or 5 or some numbers are much lower
		(ii)	need larger sample oe	1		

Question		Answer	Marks	Part marks and guidance		
$\mathbf{6}$						

Question		Answer	Marks	Part marks and guidance	
8	(a)	54 nfww	4	B3 for 90 min and 144 min or for 0.9h or B2 for 90 min or 144 min or for A: 1.5h and B 2.4h or M1 for evidence of time = distance / speed	For B3 and B2 accept 1 h 30 min and 2h 24 min
	(b)	1000x/3600 oe isw	2	B1 for $1000 x[\mathrm{~m} / \mathrm{h}]$ or $x / 3600[\mathrm{~km} / \mathrm{s}]$ or x1000/3600 oe	For 2 marks, final answer must not have any units within the expression isw wrong simplification after correct answer. Accept $x / 3.6$ and (0.277 to 0.28) x For B1 allow $x \times 1000$ or $x \div 3600$ or these clearly implied in a longer calculation
9	(a)	59.560 .5	2	B1 for either one correct or both correct but reversed	

Question		Answer	Marks	Part marks a	d guidance
(b)	(i)	Accept any correctly matched wall and $6 \times$ cupboard where values quoted satisfy: wall $<6 \times$ cupboard where 362.5 s wall < 363 and $362.5<6 \times$ cupboard ≤ 363 OR wall $\div 6$ < cupboard where 362.5 s wall < 363 and 60.41 ' to 60.42 < cupboard ≤ 60.5 OR wall \div cupboard <6 where $362.5 \leq$ wall < 363 and 60.41 ' to 60.42 < cupboard ≤ 60.5	3	B1 for $362.5 \leq$ wall value <363 B1 for $362.5<6 \times$ cupboard value ≤ 363 or 60.416 to 60.42 < cupboard value \leq 60.5 eg [lower bound of] wall is 362.5 [upper bound of] cupboard is 60.5 $362.5 \div 60.5=5.9[9 \ldots]<6$	
	(ii)	6.5 cm	3	M2 for 363.5-6 \times their lower bound of cupboard or $363.5-357$ or M1 for [upper bound of wall =] 363.5 or for $6 \times$ their lower bound of cupboard or [6 cupboards =] 357	

Question		Answer	Marks	Part marks and guidance	
10	(a)	Using interior angles: $((10-2) \times 180) \div 10 \text { or } 1440 \div 10$ seen [Int angle of triangle =] 60 in working $360-(144+60) \text { oe }[=156]$	1 1 1	Using exterior angles: $360 \div 10 \text { seen }$ [Ext angle of triangle =] 120 in working $36+120[=156]$ Alternative method: 1 for $360 \div 10$ seen 1 for [Int angle of triangle $=$] 60 in working 1 for $180-(60-36)$ [= 156] If 0 scored SC1 for 24, 36, 60, 120 or 144 shown in correct place on diagram	Mark the working. Mark angles on diagram only if 0 scored. Working backwards from 156 to 144 [to 10 sides] scores 0
	(b)	15	2	M1 for $[n=] \frac{360}{180-156}$ or $\frac{180(n-2)}{n}=156$	
11	(a)		3	B2 for 8, 9 or 11 correctly placed or B1 for the total of $F=17$ or for the total of $\mathrm{G}=20$ or for all 3 regions add up to 28 or for $17-x, x, 20-x$	Do not accept a blank region to represent 0

Question		Answer	Marks	Part marks and guidance	
14	(a)	$y=\frac{30}{\sqrt{x}} \text { oe }$	3	M1 for $y=\frac{k}{\sqrt{x}}$ oe B1 for [$k=] 30$	eg condone $y=\frac{k}{\sqrt{36}}$ for $\mathbf{M 1}$
	(b)	2.25 oe	3	B2 for $\sqrt{x}=\frac{3}{2}$ oe or M1 for $20=\frac{\text { their } 30}{\sqrt{x}}$ or $\frac{20}{5}=\frac{\sqrt{36}}{\sqrt{x}}$	

Question		Answer	Marks	Part marks	d guidance
15	(a)	$\begin{aligned} & 2^{3}-5 \times 2-1=-3 \\ & 3^{3}-5 \times 3-1=11 \end{aligned}$ Sign change so solution between $x=2$ and $x=3$	3	M2 for $2^{3}-5 \times 2-1=-3$ and $3^{3}-5 \times 3-1=11$ or M1 for $2^{3}-5 \times 2-1$ or $3^{3}-5 \times 3-1$ soi by -3 or 11 Alternative method After $x^{3}-5 x=1$ seen M2 for $2^{3}-5 \times 2=-2$ and $3^{3}-5 \times 3=12$ A1 for $-2<1$ and $12>1$ so solution between $x=2$ and $x=3$ OR M1 for $2^{3}-5 \times 2$ or $3^{3}-5 \times 3$ soi by -2 or 12 Alternative method SC3 for using an iterative equation that converges to a value in the range 2.25 to 2.35 and concluding statement that $2<2.25$ to $2.35<3$ oe or SC2 for using an iterative equation that converges to a value in the range 2.25 to 2.35	Accept other values of x used between 2 and 3 (see table in part (b)). For full marks, the two values need to produce a sign change. Examples just sufficient for third mark include: change of sign $-3<0<11$ $x=2$ gives an answer <0 and $x=3$ gives an >0 Examples insufficient for third mark: so x lies between 2 and 3 If within part (a) candidates refer to their working in part (b), award marks for this final alternative method.

Question		Answer	Marks	Part marks and guidance	
16	(a)	Subst into correct formula (may be implied) and partial simplification $25=20 t-4 t^{2} \text { seen }$ and correct completion to $4 t^{2}-20 t+25=0$	2 1dep	B2 for $25=20 t-\frac{1}{2} \times 8 \times t^{2}$ oe or $25=20 t+(-4) t^{2}$ or B1 for subst eg $25=20 t+\frac{1}{2}(-8) t^{2}$ Dep on previous 2 marks	Only accept $25=20 t-4 t^{2}$ if subst seen For B1, condone ambiguity caused by missing brackets
	(b)	2.5 oe	3	M2 for $(2 t-5)(2 t-5)$ or M1 for any two factors that give two correct terms when expanded or for partial factorisation $2 t(2 t-5)-5(2 t-5)$ OR M2 for $[t=] \frac{20 \pm \sqrt{400-400}}{8}$ or better M1 for $[t=] \frac{-(-20) \pm \sqrt{(-20)^{2}-4 \times 4 \times 25}}{2 \times 4}$ with at most one error	eg a sign error, short fraction line, short root but condone missing brackets

Marks Part marks and guidance
(c)

Shows $v=0$ and concludes

 "stationary"M1 for $\left[v^{2}=\right] 20^{2}+2(-8) 25$
or [$v=] 20+(-8) \times$ their (b)
A1 $v=0$
If $\mathbf{0}$ scored, instead award
SC2 for $v=0$ and other values
substituted into a relevant equation as a
correct check
or
SC1 for $v=0$

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

