| Please check the examination de                                   | tails below before entering | your candidate information |  |
|-------------------------------------------------------------------|-----------------------------|----------------------------|--|
| Candidate surname                                                 | Oth                         | ner names                  |  |
| Pearson Edexcel<br>Level 3 GCE                                    | Centre Number               | Candidate Number           |  |
| <b>Time</b> 1 hour 30 minutes                                     | Paper<br>reference          | 9FM0/4A                    |  |
| Further Mathematics Advanced PAPER 4A: Further Pure Mathematics 2 |                             |                            |  |
| You must have:<br>Mathematical Formulae and Sta                   |                             | Total Marks                |  |

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

## Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
   there may be more space than you need.
- You should show sufficient working to make your methods clear.
   Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

## Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶





| 1. | . In this question you must show detailed reasoning.                           |     |  |  |  |
|----|--------------------------------------------------------------------------------|-----|--|--|--|
|    | Without performing any division, explain why $n = 20210520$ is divisible by 66 | (4) |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |
|    |                                                                                |     |  |  |  |

| Question 1 continued              |  |  |  |
|-----------------------------------|--|--|--|
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
| (Total for Question 1 is 4 marks) |  |  |  |
|                                   |  |  |  |



**2.** A binary operation  $\star$  on the set of non-negative integers,  $\mathbb{Z}_0^+$ , is defined by

$$m \star n = |m-n|$$
  $m, n \in \mathbb{Z}_0^+$ 

(a) Explain why  $\mathbb{Z}_0^+$  is closed under the operation  $\bigstar$ 

**(1)** 

(b) Show that 0 is an identity for  $(\mathbb{Z}_0^{^{\scriptscriptstyle +}},\,\bigstar)$ 

**(2)** 

(c) Show that all elements of  $\mathbb{Z}_0^+$  have an inverse under  $\bigstar$ 

**(2)** 

(d) Determine if  $\mathbb{Z}_0^+$  forms a group under  $\bigstar$ , giving clear justification for your answer.

**(3)** 

| Question 2 continued              |  |  |  |  |
|-----------------------------------|--|--|--|--|
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
| (Total for Question 2 is 8 marks) |  |  |  |  |



| 3. | (a) Use the Euclidean Algorithm to find integers a and b such that |     |
|----|--------------------------------------------------------------------|-----|
|    | 125a + 87b = 1                                                     | (5) |
|    | (b) Hence write down a multiplicative inverse of 87 modulo 125     | (1) |
|    | (c) Solve the linear congruence                                    |     |
|    | $87x \equiv 16 \pmod{125}$                                         | (2) |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |
|    |                                                                    |     |

| Question 3 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 3 continued |                                   |  |  |
|----------------------|-----------------------------------|--|--|
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      |                                   |  |  |
|                      | (Total for Question 3 is 8 marks) |  |  |



| 4.                                                                                                                                      | <b>4.</b> Let <i>G</i> be a group of order $46^{46} + 47^{47}$ |            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|--|--|
| Using Fermat's Little Theorem and explaining your reasoning, determine which of the following are possible orders for a subgroup of $G$ |                                                                |            |  |  |
|                                                                                                                                         | (i) 11                                                         |            |  |  |
|                                                                                                                                         | (ii) 21                                                        |            |  |  |
|                                                                                                                                         |                                                                | <b>(7)</b> |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |
|                                                                                                                                         |                                                                |            |  |  |

| Question 4 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 4 is 7 marks) |
|                      | (Total for Question 4 is / marks) |



5. The point P in the complex plane represents a complex number z such that

$$|z+9| = 4|z-12i|$$

Given that, as z varies, the locus of P is a circle,

(a) determine the centre and radius of this circle.

**(6)** 

(b) Shade on an Argand diagram the region defined by the set

$$\{z \in \mathbb{C}: |z+9| < 4|z-12i|\} \cap \left\{z \in \mathbb{C}: -\frac{\pi}{4} < \arg\left(z - \frac{3+44i}{5}\right) < \frac{\pi}{4}\right\}$$
 (4)

| Question 5 continued |  |  |  |  |
|----------------------|--|--|--|--|
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |



| Question 5 continued               |  |  |  |  |
|------------------------------------|--|--|--|--|
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
| (Total for Question 5 is 10 marks) |  |  |  |  |
|                                    |  |  |  |  |



**6.** A recurrence system is defined by

$$u_{n+2} = 9(n+1)^2 u_n - 3u_{n+1} \qquad n \geqslant 1$$

$$u_1 = -3, u_2 = 18$$

Prove by induction that, for  $n \in \mathbb{N}$ ,

$$u_n = \left(-3\right)^n n!$$

(6)

| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |





| Question 6 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 6 is 6 marks) |



## In this question you must show all stages of your working.

You must not use the integration facility on your calculator.

$$I_n = \int t^n \sqrt{4 + 5t^2} \, \mathrm{d}t \qquad n \geqslant 0$$

(a) Show that, for n > 1

7.

$$I_{n} = \frac{t^{n-1}}{5(n+2)} (4+5t^{2})^{\frac{3}{2}} - \frac{4(n-1)}{5(n+2)} I_{n-2}$$



Figure 1

The curve shown in Figure 1 is defined by the parametric equations

$$x = \frac{1}{\sqrt{5}} t^5 \qquad y = \frac{1}{2} t^4 \qquad 0 \leqslant t \leqslant 1$$

This curve is rotated through  $2\pi$  radians about the x-axis to form a hollow open shell.

(b) Show that the external surface area of the shell is given by

**(5)** 

$$\pi \int_{0}^{1} t^{7} \sqrt{4 + 5t^{2}} dt$$

Using the results in parts (a) and (b) and making each step of your working clear,

(c) determine the value of the external surface area of the shell, giving your answer to 3 significant figures.

(5)

| Question 7 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 7 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 7 continued               |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 7 is 15 marks) |



$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 5 \\ 0 & 3 & p \\ -6 & 6 & -4 \end{pmatrix} \quad \text{where } p \text{ is a constant}$$

Given that  $\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$  is an eigenvector for **A** 

(a) (i) determine the eigenvalue corresponding to this eigenvector

(1)

(ii) hence show that p = 2

**(2)** 

(iii) determine the remaining eigenvalues and corresponding eigenvectors of A

**(7)** 

(b) Write down a matrix P and a diagonal matrix D such that  $A = PDP^{-1}$ 

(1)

(c) (i) Solve the differential equation  $\dot{u} = ku$ , where k is a constant.

(2)

With respect to a fixed origin O, the velocity of a particle moving through space is modelled by

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

By considering 
$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 so that  $\begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}$ 

(ii) determine a general solution for the displacement of the particle.

**(4)** 

| Question 8 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |