Surname
First name(s)

Centre Number

Candidate Number
0

GCSE

3300U60-1

WEDNESDAY, 11 NOVEMBER 2020 - MORNING

MATHEMATICS
 UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 2, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	4	
2.	7	
3.	4	
4.	2	
5.	4	
6.	5	
7.	2	
8.	3	
9.	4	
10.	6	
11.	2	
12.	3	
13.	6	
14.	2	
15.	3	
16.	3	
17.	4	
18.	3	
19.	5	
20.	8	
Total	80	
0 wJsc caAc Ld.	as(A20-3soouoo.1)	

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. (a) Caryl has two fair dice.

Dice A is a cube. It shows the numbers 1 to 6 .
Dice B is a tetrahedron. It shows the numbers 1 to 4 .
Caryl throws both dice.
What is the probability that she throws a 5 on dice A and a 3 on dice B ?
\qquad
$P(B$ rolls 3$)=1 / 4$
\qquad
\qquad
(b) Asif has a biased four-sided dice.

The dice shows the numbers $10,20,30$ and 40.
Asif throws the dice once.
The table below gives the probability of obtaining each number.

Number	10	20	30	40
Probability	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{10}$

What is the probability that Asif throws a 30 or a 40 ?

\qquad
\qquad

4
2. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

The diagram shows two right-angled triangles, joined together along a common side. $A B=10 \cdot 8 \mathrm{~cm}, B C=14.4 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$.

Calculate the area of triangle $A C D$.
You must show all your working.

$$
A C=\sqrt{A B^{2}+A C^{2}}=\sqrt{10 \cdot 8^{2}+14 \cdot 4^{2}}=18 \mathrm{~cm} .
$$

\qquad
Ane of $A C D=\frac{1}{2} \times A C \times C D$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. A solution of the equation

$$
x^{3}-5 x-350=0
$$

lies between 7.2 and 7.3.
Use the method of trial and improvement to find this solution correct to 2 decimal places.
You must show all your working.
\qquad
$x \quad x^{3}-5 x-530$
\qquad
4. (a) Which one of the following options describes $2 x+5 y$? Circle your answer.
an equation
a formula
an expression
an inequality
none of these
(b) Which one of the following options describes $3 x-2=7$? Circle your answer.
an equation
a formula
an expression
an inequality
none of these
5. Data for different values of t are shown in the table below.

t	Frequency
$0 \leqslant t<5$	8
$5 \leqslant t<10$	0
$10 \leqslant t<15$	7
$15 \leqslant t<20$	5

Calculate an estimate for the mean value of t.
Midpoints: $2.5,7.5,12.5$ and 17.5
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. In the diagram below, $A B, B C$ and $C D$ are three sides of a regular polygon. The polygon has 15 sides. The length of each side is 8 cm .

The exterior angle of the polygon is x°.
$B R C$ is a right-angled triangle.

Calculate the length of $B R$.

(adp)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. Calculate the value of $\left(3.2 \times 10^{7}\right) \times\left(8.3 \times 10^{-2}\right)$.

Give your answer in standard form.
\qquad

$$
=26.56 \times 10^{5}
$$

\qquad
$=2.656 \times 10^{6}$
8. The lengths of the sides of a rectangle are given as 24 cm and 15 cm .

Each measurement is given correct to the nearest centimetre.
Calculate the difference between the greatest possible perimeter of the rectangle and the least possible perimeter of the rectangle.
\qquad

$$
\text { Maximum perimeter }=2 \times 24.5+2 \times 15.5
$$

$$
=80 \mathrm{~cm}
$$

\qquad
\qquad
\qquad
\qquad
Difference $=80-76=4 \mathrm{~cm}$
\qquad
\qquad
\qquad
\qquad
9. Solve the following simultaneous equations using an algebraic (not graphical) method.

$$
\begin{aligned}
& 3 x-2 y=14 \\
& 7 x+3 y=25
\end{aligned}
$$

You must show all your working.
\qquad
\qquad
(1) + (2): $23 x=92 \quad 2 \div 23$

$$
x=4 .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10. The diagram below shows a circle with centre at point O.
A, B, C and D are all points on the circumference of the circle.
$A B=7.5 \mathrm{~cm}$ and $B C=4.7 \mathrm{~cm}$.

(a) (i) Give the reason why $\hat{A B C}$ is 90°.

Angle at the circumference subtended by
adianeter is a right angl.
(ii) Calculate the size of angle x.
$\tan x=7.5 / 4.7$.
\qquad
\qquad
$x=58^{\circ}$
(b) Write down the size of angle y.

State the circle theorem you have used to find your answer.

$$
y=58^{\circ}
$$

Ciridethooen uses: Angles at the circumference
subtended by the save chard are equal.
11. Write 16^{100} in the form 2^{n}.
\qquad
\qquad
\qquad
\qquad
\qquad
12. Calculate the perpendicular height of a cone with a volume of $5533 \mathrm{~cm}^{3}$ and a base area of $825 \mathrm{~cm}^{2}$.

$$
V_{\text {plume }}=\pi r^{2} h / 3
$$

\qquad
$h=\frac{V \times 3}{\pi^{2}}, V=5533, \pi r^{2}=825$.
\qquad
\qquad
13. (a) Factorise $4 x^{2}-81$.

Difference of two squares:
\qquad
\qquad
\qquad
\qquad
(b) Factorise $7 x^{2}+10 x-8$.
\qquad
$7 x^{2}+10 x-8=(7 x-4)(x+2)$
\qquad
\qquad
\qquad
\qquad
(c) Factorise $(x+2)^{3}+5(x+2)^{2}$.

$$
(x+2)^{3}+5(x+2)^{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. In the following diagram, triangle $A B C$ has been enlarged to triangle $D E F$, with the centre of enlargement at O.
Write down the scale factor of the enlargement.

scale factor: $-1 / 2$
15. The first four terms of a sequence are

$$
3,
$$

$$
9,
$$

19,
33,
Find the 100th term of the sequence.
\qquad
\qquad
\qquad
\qquad
$2 n^{2}+1$, when $n=100$
\qquad
\qquad
\qquad
16. An amount written correct to the nearest $£ 10$ is $£ 7180$.

This amount is increased by 23.5%, correct to the nearest 0.1%.
Calculate the least possible value of the increased amount.
Give your answer correct to the nearest pound.

\qquad
$\begin{aligned} \text { Least possible value } & =7175 \times 1.2345 \\ & =£ 8858 \text { (nearest } f) .\end{aligned}$
\qquad
\qquad
\qquad
\qquad
17. (a) Sketch the curve $y=\cos x$, for values of x in the range $x=0^{\circ}$ to $x=360^{\circ}$. You must indicate any important values on the axes.

(b) Solve the equation $\cos x=0.7$.

Give all solutions in the range $x=0^{\circ}$ to $x=360^{\circ}$.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x=45.6^{\circ}$ and $314.4^{\circ}(1 d p)$
18. A large number of people took part in a survey that was carried out to find the popularity of three different walks in West Wales.
Each person surveyed was asked, independently, to select their one favourite walk. The table below shows the results of the survey.

Walk	The percentage of people who selected the walk
The Preseli Ridge	70%
Ramsey Sound	20%
Laugharne	10%

Three girls, Constance, Scarlett and Clementine, were chosen at random from all of the people surveyed.
They were asked which walk they had selected.
Calculate the probability that the three girls had each selected a different walk.
\qquad
chose different walks.
So $P($ Some ore chase Presel: $)=0.7$
$P($ Someone chose Rams icy $)=0.2$
$P($ Someare chose Laughare $)=0.1$

$$
\begin{aligned}
P(\text { each chose differently } & =0.7 \times 0.2 \times 0.1 \times 6 \\
& =0.084
\end{aligned}
$$

19. Use the quadratic formula to solve $(5 x+3)(5 x-3)=19 x$.

You must show all your working.
\qquad
$(5 x+3)(5 x-3)-19 x=0$
\qquad
$25 x^{2}+15 x-15 x-19 x-$
$25 x^{2}-19 x-9=0$.
\qquad
Quadratic formula:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20. $A C B$ is a sector of a circle with radius $x \mathrm{~cm}$ and centre A, as shown below.

$$
C \hat{E} A=34^{\circ}, A \widehat{C} E=100^{\circ}, C \widehat{A} E=46^{\circ} \text { and } C E=12 \mathrm{~cm}
$$

Calculate the area of the shaded region $B C E$.
You must show all your working.
\qquad
Area of sector $A C B=\frac{46}{360} \times \pi \times(9.328)^{2}$
$=34.93 . \mathrm{cm}^{2}$
\qquad
$=55 \cdot 12 \cdots \mathrm{~cm}^{2}$.
\qquad
\qquad
\qquad
\qquad

