Surname	Centre Number
First name(s)	Candidate Number
0	

GCSE

3300U50-1

MONDAY, 9 NOVEMBER 2020 - MORNING

MATHEMATICS
 UNIT 1: NON-CALCULATOR HIGHER TIER

1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.
Take π as $3 \cdot 14$.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 4, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

Formula Llst - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. (a) Write an expression for the nth term of the following sequence.

(b) The first four diagrams in a sequence are shown below.

Diagram 1
Diagram 2

Diagram 3

Diagram 4

Complete the following subtraction.

(c) The first three diagrams in another sequence are shown below.

Diagram 1

Diagram 2

Diagram 3

Give an expression, in terms of n, for the number of dots (\bullet) in Diagram n. You must simplify your expression.
Two dots added each tine starting with

$$
\text { 4. } 2 n+c, 2 \times 1+c=4, \quad c=2
$$

$2 n+2$.
2. (a) On each Venn diagram, shade the region that represents the given set.
(i) $A \cup B$

(ii) $A^{\prime} \cap B$

(b) In the Venn diagram below:

- Set $A=$ multiples of 3 ,
- Set $\mathrm{B}=$ multiples of 5 ,
- Set $\mathrm{C}=$ multiples of 6 .

Explain why the circle representing Set C is drawn inside the circle drawn to represent Set A.
All multiples of 6 are multiples of 3 , so
every element in Chill also be in A.
3. The table below shows some of the values of $y=x^{2}-4 x-3$ for values of x from -2 to 5 .

x	-2	-1	0	1	2	3	4	5
$y=x^{2}-4 x-3$	9	2	-3	-6	-7	-6	-3	2

(a) Complete the table by finding the value of y for $x=-2$ and the value of y for $x=2$.

$$
\begin{aligned}
& (-2)^{2}-4 \times(-2)-3=4+8-3=9 \\
& (2)^{2}-4 \times(2)-3=4-8-3=-7 .
\end{aligned}
$$

(b) On the graph paper opposite, draw the graph of $y=x^{2}-4 x-3$ for values of x from
-2 to 5 .
(c) Draw the line $y=1$ on the graph paper.

Write down the values of x where the line $y=1$ cuts the curve $y=x^{2}-4 x-3$.
Values of x are $\quad-0 \cdot 8 \quad$ and...

4. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

A sum of money is shared in the ratio $3: 4: 7$.
The smallest share is $£ 210$.
What is the total amount of money shared?
You must show all your working.
The smallest share is $3 /(3+4+7)$ of the total. So $210 \times 14 / 3$ is the total.
\qquad
The total amount of money is $f 980$.
\qquad
\qquad
\qquad
5. Find four different positive whole numbers so that:

- their mean is 8 ,
- their range is 8 ,
- their median is 8 .

Write your four numbers in the boxes below.
Numbers $a, b, c, d .(a<b<c<d)$. Median: Half way between $b \&$ c must be 8 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { mosernamisuse } 4 \longdiv { 7 } 9 1 2
$$

6. (a) Factorise $x^{2}-7 x+12$, and hence solve $x^{2}-7 x+12=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Expand and simplify $(5 x-2)^{2}$.
\qquad
\qquad

$$
=25 x^{2}-20 x+4 .
$$

7. Alice works for an engineering company.

A working day is chosen at random.
From keeping a record over the last year, Alice knows that, for this working day,

- the probability that she travels to work by car is 0.7 ,
- the probability that she arrives at work before 8:00 a.m. is 0.4 ,
- her time of arrival is independent of how she travels to work.
(a) Using the above information, draw and fully label a complete tree diagram. You must include all probabilities.

(b) What is the probability that, on the randomly-chosen working day, Alice travels to work by car and arrives before 8:00 a.m.?

\qquad
\qquad

8. A circle, centre O, has a radius of 4 cm .
A and B are points on the circumference of the circle.
Lines $P A$ and $P B$ are both tangents to the circle.
$P B=12 \mathrm{~cm}$.

(a) What is the length of $P A$?

State the circle theorem you have used to find your answer.

$$
P A=12 \mathrm{~cm}
$$

circle theorem: Tangents from an external point are equel in Length.
(b) What is the size of $P \widehat{A O}$?

State the circle theorem you have used to find your answer.

$$
\hat{P A O}=90^{\circ}
$$

Circle theorem: The tangent meets the radius at 90°.
(c) Calculate the area of the quadrilateral $P A O B$.

Area of $P A O B=$ Triangle $P O B+$ Triangle $P O A$.
\qquad
\qquad
\qquad
\qquad
9. (a) Which one of the following equations represents a straight line that is parallel to the line $2 y=5 x-4$? Circle your answer.
$y=2 \cdot 5 x+3$
$y=5 x-2$
$y=0.4 x-4$
$y=-0 \cdot 4 x-2$
$2 y=-5 x+4$
(b) Which one of the following equations represents a straight line that intersects the line $y=7 x-5$ on the y-axis?
Circle your answer.
$y=7 x+5$
$y=5-7 x$
$y=3 x+5$
$y=0$
$y=3 x-5$
(c)

Which one of the five straight lines shown above could represent the equation $y=-2 x+3$?
Circle your answer.
Line A
Line B
Line C

Line E
10. A farmer knows that the time, t, taken by goats to eat all the grass in a particular field is inversely proportional to the number of goats, g, in the field.

When there are $\mathbf{2 5}$ goats in the field, the time taken to eat all the grass is 36 days.
You may assume that all the goats eat grass at the same rate.
(a) Find a formula for the time, t, in terms of the number of goats, g.
t $\quad t \alpha / \mathrm{g}$, so $t=k / g$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Hence, find the time taken for all of the grass to be eaten when there are 20 goats in the field.
\qquad
\qquad
(c) The farmer needs the grass to last for at least 40 days. What is the greatest number of goats that should be allowed in the field?

$$
40=\frac{900}{g}, \quad g=\frac{900}{40}=22.5
$$

\qquad
He should have 22 goats.
\qquad
\qquad
11. (a) Circle the expression which is equivalent to $m^{\frac{2}{3}}$.

$$
\left.\frac{1}{3} m^{2} \quad 2 m^{\frac{1}{3}} \quad \frac{2}{3} m \quad(\sqrt[3]{m})^{2}\right) \quad(\sqrt{m})^{3}
$$

\qquad
\qquad
\qquad
(b) Circle the expression which is equivalent to $p^{\frac{3}{4}} \times p^{-\frac{1}{4}} \div p^{\frac{1}{4}}$.

$$
p^{-\frac{1}{4}}
$$

$p^{-\frac{3}{64}}$

$$
p^{\frac{5}{4}}
$$

$$
p^{\frac{3}{4}}
$$

$p^{\frac{1}{4}}$
\qquad
\qquad
\qquad
12. Express the following as a single fraction in its simplest form.
\qquad

$$
\frac{6}{3 x-5}-\frac{4}{2 x+1}
$$

$\frac{6}{3 x-5}-\frac{4}{2 x+1}=\frac{6(2 x+1)-4(3 x-5)}{(3 x-5)(2 x+1)}$
\qquad
13. Two similar cones have volumes of $20 \mathrm{~cm}^{3}$ and $1280 \mathrm{~cm}^{3}$. The radius of the base of the smaller cone is 2.3 cm . Calculate the radius of the base of the larger cone.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. (a) Express 0.812 as a fraction.
\qquad
\qquad
इ $990 x=804$
\qquad
\qquad
(b) Simplify $\sqrt{72}$.
(b) Simplify $\sqrt{72}$.

$$
\begin{array}{lllll}
2 \sqrt{6} & 6 \sqrt{2} & 36 & 36 \sqrt{2}
\end{array}
$$

\qquad
\qquad
(c) Expand and simplify $(7-2 \sqrt{5})(3+\sqrt{5})$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. In the triangle EFH below:

- G is the midpoint of $F H$,
- $E G$ and $F H$ are perpendicular.

Prove that EFG and EHG are congruent triangles.
You must state the condition of congruence.
$F G=G H$ (as G is the midpoint).
EG is a shared side.
\qquad
are perpendicular.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16. Make y the subject of the following formula.

\qquad
\qquad
\qquad
\qquad
17. (a) The following diagram shows a sketch of the curve $y=f(x)$.

The curve is transformed, as shown below.

Using function notation, complete the equation of the transformed curve.

$$
y=f(x)+5
$$

(b) The following diagram again shows a sketch of the curve $y=f(x)$.

The curve is transformed, as shown below.

Using function notation, complete the equation of the transformed curve.

$$
y=-f(x)
$$

18. A circle has radius $r \mathrm{~cm}$, where r is an integer.

The side of a square is of length $x \mathrm{~cm}$.
If the circle and square have the same area, explain why x cannot be an integer.
You should consider algebraic expressions in your answer.

so x must be too
\qquad
\qquad
\qquad
19. Dewi has a box containing eleven socks.

Six of the socks are red, four are green and one is yellow.
Early one morning, without switching on the light, Dew selects two socks at random.
(a) Calculate the probability that the first sock selected is yellow and the second is red.
$P($ First Sockis yellow $)=1 / 11$
$P($ Second sock is red $)=6 / 10$
\qquad
(b) Calculate the probability that Dew selects two socks of the same colour.
\qquad
$P($ Both aregrean $)=4 / 11 \times 3 / 10=6 / 55$ $P($ Both yell $)=0$.
\qquad
(c) Calculate the probability that at least one green sock is selected.
\qquad
\qquad
\qquad
\qquad
\qquad

