AQA

Please write clearly in block capitals.

Sumame \qquad
Forename(s)
Candidate signature
I declare this is my own work.
AS

PHYSICS

Paper 1

Tuesday 12 May 2020

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Answer all questions in the spaces provided.

0	1	One strong interaction that occurs when two high-energy protons collide is

$$
p+p \rightarrow p+\pi^{+}+\pi^{-}+\mathbf{x}
$$

0	1	1

lepton

$$
0+0 \rightarrow 0+0+0+0
$$

Strange $0+0 \rightarrow 0+0+0+0$
charge $+1 e+1 e \rightarrow+12+\operatorname{Le} e^{-1 e}+1 e$ lepton number $=$ \qquad
strangeness = \qquad
charge $=$ \qquad

0	1	2
	Identify particle X.	

| 0 | 1 | 3 |
| :--- | :--- | :--- | A possible decay of a negative pion is

$$
\pi^{-} \rightarrow \mathrm{e}^{-}+\mathbf{Y}
$$

What is particle Y ?
Tick (\checkmark) one box.
\bar{v}_{e}

ν_{c}

π^{0}

${ }_{0}^{1} n$

Question 1 continues on the next page

Some subatomic particles are classified as hadrons. There are two classes of hadrons.

Discuss the nature of hadrons.
Your answer should include:

- the identifying properties of hadrons
- the structure of a hadron in each class
- a discussion of the stability of free hadrons.

Hadrons ore particles that interact via the strong nuclear force. They are composed of quarks.

The two classes mentioned ore mesons and bayous. Mesons are structured in quark - ontiquark pars, such as the π^{+}which is aud. Baryons ore ore make up g three quarks.

An example of a free hadron is a proton. This is the only stable free baryon. An example of free bayer decay would be a neutron
arecqua into a proton. An exande becegug into a proton. An example of free meson decay wald be kan decay into pions. see below the equation for these free hodion decays

$$
\begin{aligned}
& n \rightarrow p+e^{-}+V_{e} \\
& k^{+} \rightarrow \pi^{-}+\pi^{0}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 2 |
| :--- | :--- | A spacecraft entering the atmosphere of Mars must decelerate to land undamaged on

Figure 1

| $\mathbf{0}$ | $\mathbf{2} .1$ Figure 1 shows the spacecraft of total mass 610 kg entering the atmosphere at a |
| :--- | :--- | :--- | speed of $5.5 \mathrm{~km} \mathrm{~s}^{-1}$.

Calculate the kinetic energy of the spacecraft as it enters the atmosphere.
Give your answer to an appropriate number of significant figures.

$$
\begin{aligned}
E_{k} & =\frac{1}{2} m v^{2} \\
E_{k} & =\frac{1}{2} \times 610 \times 5.5^{2} \times 10^{3^{2}} \\
& =9.23 \times 10^{9}
\end{aligned}
$$

Figure 2 shows the parachute-spacecraft system, with the open parachute displacing the atmospheric gas. This causes the system to decelerate.

Figure 2

Explain, with reference to Newton's laws of motion, why displacing the atmospheric gas causes a force on the system and why this force causes the system to decelerate.

The resistive force of the gas on
the greater than the weight is spacecraft, so there is a result ont
of se force, ord the system decelleates.
Question 2 continues on the next page

| 0 | 2 | 3 |
| :--- | :--- | :--- | As the parachute-spacecraft system decelerates, it falls through a vertical distance of 49 m and loses $2.2 \times 10^{5} \mathrm{~J}$ of kinetic energy.

During this time, $3.3 \times 10^{5} \mathrm{~J}$ of energy is transferred from the system to the atmosphere.
The total mass of the system is 610 kg .
Calculate the acceleration due to gravity as it falls through this distance.

$$
K E \text { lost }=2.2 \times 10^{5} \mathrm{~J}
$$

$$
3.3<10^{5} \mathrm{~J} \text { to atmosphere }
$$

$$
3.3-2.2=1.1 \times 10^{5} \mathrm{~J} \quad E n e g y
$$

Au e t grant.

$$
E_{p}=m g h
$$

$$
\begin{gathered}
1.1 \times 10^{5}=610 \times g \times 49 \\
y=1.1 \times 10^{5} / 60 \times 49
\end{gathered}
$$

$$
\text { acceleration due to gravity }=3.7 \mathrm{~m} \mathrm{~s}^{-2}
$$

| 0 | 2 | .4 Dust from the surface of Mars can enter the atmosphere. This increases the density |
| :--- | :--- | :--- | of the atmosphere significantly.

Deduce how an increase in dust content will affect the deceleration of the system.

\section*{| 0 | 3 | 1 | Figure 3 shows a golf ball at rest on a horizontal surface 1.3 m from a hole. $. .0 \mid$ |
| :--- | :--- | :--- | :--- |}

Figure 3

A golfer hits the ball so that it moves horizontally with an initial velocity of $1.8 \mathrm{~m} \mathrm{~s}^{-1}$. The ball experiences a constant deceleration of $1.2 \mathrm{~m} \mathrm{~s}^{-2}$ as it travels to the hole.

Calculate the velocity of the ball when it reaches the edge of the hole.
[2 marks]
we have
s,u,a. Need V :
use $v^{2}=u^{2}+2 a s$
$v^{2}=1.8^{2}+2 \times-1.2 \times 1.3$
$v^{2}=0.12$
$v=2.52733^{-1} 0.346 \mathrm{~ms}^{-1}$
velocity $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

Question 3 continues on the next page

| 0 | 3 | $\mathbf{2}$ Later, the golf ball lands in a sandpit. The golfer hits the ball, giving it an initial |
| :--- | :--- | :--- | velocity u at 35° to the horizontal, as shown in Figure 4. The horizontal component of u is $8.8 \mathrm{~m} \mathrm{~s}^{-1}$.

Figure 4

Show that the vertical component of u is approximately $6 \mathrm{~m} \mathrm{~s}^{-1}$.

use tan...

$$
\begin{aligned}
\tan 35 & =\frac{u_{v}}{8.8} \\
u_{v} & =\tan 35 \times 8.8 \\
& =6.16 \mathrm{~ms}^{-1}
\end{aligned}
$$

0	3	3 The ball is travelling horizontally as it reaches X, as shown in Figure 5.

Figure 5

not to scale
Assume that weight is the only force acting on the ball when it is in the air.
Calculate the time for the ball to travel to \mathbf{X}.
$\begin{array}{ll}u_{v}=6.16 \mathrm{~ms}^{-1} \\ a=-9.81 \mathrm{~ms}^{-2} & \frac{V-u}{a t}\end{array}$
$t=$?
$\frac{v-u}{a}=t \quad t=\frac{-6.16}{-9.81}$
$V_{V}=0 \mathrm{~ms}^{-1}$
time $=$ \qquad s

0	3	.4 Calculate the vertical distance of \mathbf{X} above the initial position of the ball. .4.

$$
\begin{aligned}
& \text { now we need } s \text {; } \\
& s=u t+\frac{1}{2} a t^{2} \\
& s=6.16 \times 0.63+\frac{1}{2} \alpha-9.81 \times 0.63^{2}=1.93 \mathrm{~m} \\
& \quad \text { vertical distance }=\quad 1.9 \quad \mathrm{~m}
\end{aligned}
$$

Question 3 continues on the next page

The golfer returns the ball to its original position in the sandpit. He wants the ball to land at \mathbf{X} but this time with a smaller horizontal velocity than in Figure 5.

Figure 6

not to scale

0	3	5	5

0	3	6	Explain your reason for selecting this trajectory.

0	$\mathbf{4}$	A sample of pure boron contains only isotope X and isotope Y.

| 0 | 4 | 1 |
| :--- | :--- | :--- | The sample is ionised, producing ions each with a charge of $+1.6 \times 10^{-19} \mathrm{C}$. The specific charge of an ion of X is $8.7 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$.

Calculate the mass of an ion of \mathbf{X}.

$$
\begin{aligned}
& \frac{Q}{m}=8.7 \times 10^{6} \\
& m=Q / 8.710^{6} \\
& m=1.6 \times 10^{-19} \div 8.7 \times 10^{6}
\end{aligned}
$$

$$
\text { mass of ion }=\frac{1.8 \times 10^{-26}}{} \mathrm{~kg}
$$

$$
\begin{array}{r}
\text { mass of a nucleon }=1.7 \times 10^{-27} \mathrm{~kg} \\
1.8 \times 10^{-26} \div 1.7 \times 10^{-27}=10.6
\end{array}
$$

$$
\text { number of nucleons }=\quad 11
$$

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$	Compare the nuclear compositions of \mathbf{X} and \mathbf{Y}.

Question 4 continues on the next page

| 0 | 4 | 4 |
| :--- | :--- | :--- | lions of Y have the same charge as ions of X.

State and explain how the specific charge of an ion of X compares with that of an ion of \mathbf{Y}.

| 0 | 4 | 5 |
| :--- | :--- | :--- | Table 1 contains data about two completely ionised samples of pure boron. Each sample contains only isotopes \mathbf{X} and \mathbf{Y}.

Table 1

Sample number	Number of ions in sample	Mass of sample / kg	Charge on each ion / C
1	3.50×10^{16}	6.31×10^{-10}	$+1.60 \times 10^{-19}$
2	3.50×10^{7}	6.20×10^{-19}	$+1.60 \times 10^{-19}$

Deduce which sample, $\mathbf{1}$ or 2, contains a greater percentage of isotope \mathbf{Y}.
specific charge!

$$
\begin{aligned}
& \text { ec: Pic charge! } \\
& \text { sample 1: }\left(3.50 \times 10^{16} \times 1.6 \times 10^{-19}\right) \div 6.31 \times 10^{-10} \\
& \quad 8.9 \times 10^{6}\left(\mathrm{~kg}^{-1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sample 1: }\left(3.50 \times 10^{0}\right. \\
&=8.9 \times\left(\mathrm{kg}^{-1}\right. \\
& \text { Sample 2: }\left(3.50 \times 10^{7} \times 1.6 \times 10^{-19}\right) \div 6.20 \times 10^{-19} \\
&
\end{aligned}
$$

$$
=9.0 \times 10^{6} \mathrm{Ckg}^{-1}
$$

| 0 | 5 |
| :--- | :--- | :--- |\quad A cell has an emf of 1.5 V and an internal resistance of 0.65Ω.

The cell is connected to a resistor \mathbf{R}.

0	5	-1	State what is meant by an emf of 1.5 V .

[2 marks]

| 0 | 5 | 2 |
| :--- | :--- | :--- | The current in the circuit is 0.31 A .

Show that the total power output of the cell is approximately 0.47 W .

$$
\begin{aligned}
& p=V I \\
& p=0.31 \times 1.5=0.1 \times(7+1) \quad 0.465 \mathrm{~W}
\end{aligned}
$$

0	5	3

Question 5 continues on the next page

0	5

The cell stores 14 kJ of energy when it is fully charged. The cell's emf and internal resistance are constant as the cell is discharged.
Calculate the maximum time during which the fully-charged cell can deliver energy to resistor \mathbf{R}.
[2 marks]

$$
\begin{aligned}
& E=p t \\
& \frac{E}{P}=t \quad p=I^{2} R=0.31^{2} \mathrm{~A} \times 4.84=0.465 \\
& \frac{14 \mathrm{k}}{0.46 \mathrm{~J}}=3.01 \times 10^{4} \mathrm{~s} \\
& \quad \text { maximum time }=\frac{3.01 \times 10^{4} \mathrm{~s}}{} \quad
\end{aligned}
$$

| 0 | 5 | 5 | A student uses two cells, each of emf 1.5 V and internal resistance 0.65Ω, to operate |
| :--- | :--- | :--- | :--- | a lamp. The circuit is shown in Figure 7.

The lamp is rated at $1.3 \mathrm{~V}, 0.80 \mathrm{~W}$.
Deduce whether this circuit provides the lamp with 0.80 W of power at a potential difference (pd) of 1.3 V .
Assume that the resistance of the lamp is constant.
intend resistance $=0.65$
court in lapp Requires: $I=\frac{p}{V}=\frac{0.8}{1.3}=0.615 \mathrm{~A}$

resistance in lamp: $R=\frac{v^{2}}{p}=2.11 \Omega$
cured in each cell: 0.31 A

Cost volts: $V=I R$	$=0.31 \times 0.65=0.2 \mathrm{~V}$
This lop A os provide 1.3 V and 0.80 W,	
because terminal pd	$=\operatorname{emg}-$ lost Volts
	$=1.5 \cdot 0.2=1.3 \mathrm{~V}$

Question 5 continues on the next page

State and explain how more of these cells can be added to the circuit to make the lamp light at normal brightness for a longer time. No further calculations are required.

Mace cells con be abbes in parallel, because there is moe energy stored in the cells but the voltore across the bull is still 1.5 V as it boesn't increase.
\qquad

0	6	$F i g u r e$
8	shows the apparatus a student uses to investigate stationary waves in a	

Two small pieces of adhesive tape are fixed to the string as markers \mathbf{P} and \mathbf{Q}. Markers \mathbf{P} and \mathbf{Q} are 0.55 m apart and an equal distance from the ends of the string. A graph paper grid is placed behind the string between \mathbf{P} and \mathbf{Q}.

Figure 8

not to scale

| 0 | 6 | -1 |
| :--- | :--- | :--- | The string is made to vibrate at the second harmonic.

Compare the motion of \mathbf{P} with that of \mathbf{Q}.
[2 marks]

\qquad
\qquad

Question 6 continues on the next page

| 0 | 6 | 2 |
| :--- | :--- | :--- | The frequency of the vibration generator is increased, and a higher harmonic of the stationary wave is formed.

Figure 9 shows the string between \mathbf{P} and \mathbf{Q} at an instant in time. The dashed horizontal line indicates the position of the string at rest when the vibration generator is switched off.

Figure 9

The frequency of the vibration generator is 250 Hz .
Calculate the wave speed.

$$
\begin{aligned}
& V=f \lambda \\
& \rho=250 \mathrm{~Hz} \\
& \lambda=\frac{0.55}{2}=0.275 \mathrm{~m} \\
& v=250 \times 0.275=6.875 \mathrm{~ms}^{-1}
\end{aligned}
$$

wave speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

| 0 | 6 | . |
| :--- | :--- | :--- | The instantaneous position of the string in Figure 9 can be explained by the superposition of two waves. The instantaneous positions of these waves between \mathbf{P} and \mathbf{Q} are shown in Figure 10.

Figure 10

Describe the properties that the waves must have to form the shape shown in Figure 9.

Frequency.

Question 6 continues on the next page

Figure 11

Draw, on Figure 12, the appearance of the string between \mathbf{P} and \mathbf{Q} at this instant.
[1 mark]
(destructive interference) Figure 12

| 0 | 6 |
| :--- | :--- | :--- | :--- | $\mathbf{5}$ Annotate (with an \mathbf{A}) the positions of any antinodes on your drawing in Figure 12.

[2 marks]

| 0 | 6 | 6 | The frequency of the vibration generator is reduced until the first harmonic is observed |
| :--- | :--- | :--- | :--- | in the string, as shown in Figure 13.

Figure 13

The string in Figure 13 is replaced with one that has 9 times the mass per unit length of the original string. All other conditions are kept constant, including the frequency of the vibration generator and the tension in the string.

Deduce the harmonic observed.

$$
\begin{aligned}
& \text { using } \quad f=\frac{1}{2 L} \sqrt{\frac{T}{\mu_{1}}} \quad \quad \quad \quad=\frac{1}{2 L} \sqrt{\frac{T}{\mu_{1}}}=\mu_{\text {new }} \\
& \rho=\frac{1}{2 L} \sqrt{\frac{T}{9 \mu_{n}}} \\
& \text { so new fist harmonic is } f=\frac{1}{6 L} \sqrt{\frac{T}{\mu_{n+w}}}
\end{aligned}
$$

\qquad

END OF QUESTIONS

