$A Q A$

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

BIOLOGY

Paper 2

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

| 0 | 1 | 1 |
| :--- | :--- | :--- | The general structure of a fatty acid is RCOOH .

Name the group represented by COOH .
carbonyl

0	1	2

Figure 1

Name the type of R group shown in Figure 1.
Explain your answer.

Type of R group \qquad unsaturated fatty acid

Explanation as if contains a carbon to carbon double bond.

0	1	.3

The emulsion test:
add ethanol and then water and shake together. If lipids are present a white 1 miller emulsion is produced.
\qquad
\qquad

In 1935, scientists suggested a model for the chemical structure of a cell-surface membrane. Figure 2 shows the membrane structure the scientists suggested.

Figure 2

0	1	4
Give one similarity and two differences between the membrane structure shown in		

similarity Both have a phospholipid bilayer as its
part.
Difference 1 No cholesterol like in fuid-mosaic
model.
Difference 2 No glycoprotein or ghyoolipids present like in fluid - mosaic model,

Turn over for the next question

Describe and explain one feature of the alveolar epithelium that makes the epithelium well adapted as a surface for gas exchange. Do not refer to surface area or moisture in your answer.

It has flattened thin cells and the wall is only one cell thick. This reduces the deiffusuon pathway over which gases have to diffuse across. So the rate of diffusion is munch faster,
\qquad
\qquad
\qquad

Doctors measure the health of lungs by calculating the $\mathrm{FEV}_{1}:$ FVC ratio.

- FEV_{1} is the maximum volume of air exhaled in one second.
- FVC is the maximum volume of air exhaled in one breath.

The minimum FEV_{1} : FVC ratio of healthy lungs is $0.7: 1$
A man with the lung disease emphysema inflated his lungs fully. He then exhaled as much of this air as quickly as possible in one breath. Figure 3 shows how the volume of exhaled air changed during this breath.

Figure 3

0	2	2	Use the information provided to determine the $\mathrm{FEV}_{1}: \mathrm{FVC}$ ratio of this man's lungs.

Go on to determine how many times greater the minimum ratio of healthy lungs is than his ratio.

$$
\left.\div 3.6<\begin{array}{l}
2.3: 3.6 \\
0.611
\end{array}\right) \div 3.6
$$

$$
\frac{0.7}{0.61}=1.1475
$$

$\mathrm{FEV}_{1}:$ FVC ratio of man's lungs $=0.6: 1$
How many times greater? 1.15

Question 2 continues on the next page

\square Tidal volume is the volume of air inhaled and exhaled during a single breath when a person is resting. The tidal volume in a person with emphysema is reduced compared with the tidal volume in a healthy person.

Suggest and explain how a reduced tidal volume affects the exchange of carbon dioxide between the blood and the alveoli.

As there is reduced volume of air eochalted there is more carbon dioxide remaining in the lungs.
This makes the concentration of caubondioxude in the hangs higher, reducing the concentration gradient along which it diffuses out of the blood into the alveoli. This causes slower diffusion rate and mare carbon dioxide remaining in the blood.

| 0 | 3 | 1 |
| :--- | :--- | :--- | :--- | name.

What term is used to describe this method of naming organisms?

Binomial

0	3	2

A factor that increases the rate at which
\qquad
\qquad

0	3	3	Figure 4 shows how the species Spartina townsendii is produced.

The number of chromosomes in cells is shown in some of the boxes.
Figure 4

Complete Figure 4 by giving the correct number of chromosomes in each of the boxes.

A mutation in the number of chromosomes in a S. townsendii cell produced a new species, Spartina anglica.

Figure 5 shows the number of chromosomes in leaf cells of these species.
Figure 5
S. townsendii

61
S. anglia

122

| 0 | 3 | 4 |
| :--- | :--- | :--- | Name the type of mutation that changed the number of chromosomes in S. townsendii to produce S. anglica. Explain your answer.

Name of mutation Non-disjunction
Explanation. At the stage of meiosis when sex cells
are being produced chromosomes are not seperated Remaining together in the same cell
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | 5 |
| :--- | :--- | :--- | Genetic variation within a species is increased during meiosis by crossing over and the independent segregation of homologous chromosomes.

Apart from mutation, explain one other way genetic variation within a species is increased.
\qquad combination of maternal and paternal chromosomes.
\qquad

0 \qquad 1

Give two structures found in all prokaryotic cells and in all eukaryotic cells.

1 Cyton plasm
2 \qquad cell surface membrane

All prokaryotic cells contain a circular DNA molecule and some prokaryotic cells contain plasmids.

| 0 | 4 | -2 |
| :--- | :--- | :--- | Scientists have found that the rate of plasmid replication is faster in cells growing in a culture with a high concentration of amino acids than in a culture with a lower concentration of amino acids.

Suggest one explanation for the faster rate of plasmid replication in cells growing in a culture with a high amino acid concentration.

Amino acids are used for protein synthesis, so with more amino acids more proteins ene produced. Enzymes involved in DNA replication are proteins, so mare of these enzymes will lead to fasts DN iA replication

Do not write outside the

A scientist prepared a culture of a bacterial species.

- She extracted the plasmids and the circular DNA molecules from a sample of cells taken from this culture (A).
- She then added antibiotic \mathbf{X} to the culture and let the cells divide for 4 hours.
- She then extracted the plasmids and the circular DNA molecules from a sample of these cells (B).
- The scientist separated the plasmids from the circular DNA molecules in \mathbf{A} and in \mathbf{B} using ultracentrifugation.

Figure 6 shows her results.
Figure 6

| 0 | 4 | .3 |
| :--- | :--- | :--- | :--- | plasmids and the circular DNA? Explain your answer.

Circular DNA is bigger and denser as its lower down the columntowords the bottom.
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | .4 |
| :--- | :--- | :--- | What can you conclude from Figure 6 about the effect of antibiotic X on plasmid replication and on circular DNA replication? Explain your answer.

As the circular DNA band is the same width in A and B, this suggest its replication stops.
However fo plasmid replication, it continues and
increases as the band for plasmids is Wider
in B whiter with X present than without in A.

Turn over for the next question

| 0 | 5 | A student investigated the activity of the enzyme amylase. He cut three identical wells |
| :--- | :--- | :--- | (D, E and F) in starch-agar in a Peri dish. He added $0.2 \mathrm{~cm}^{3}$ of:

- amylase solution to well D
- boiled amylase solution to well E
- water to well F.

After 60 minutes, he covered the starch-agar with iodine solution. Figure 7 shows his results.

Figure 7

0	5	1

Amylase hydrolyses starch into mare simple molecules like maltose.

Jodine solution stains starch blue-black while maltose doesn't, so where amylase has broken down the starch a clear area is created.

| 0 | 5 | 2 |
| :--- | :--- | :--- | What can you conclude about the activity of amylase from the appearance of the agar surrounding well E and well F in Figure 7?

Waler is used as a control, as there is no amylase thee is no hydrolysis of starch, so breakdown is dee to amylase. In E, enzyme is denatured as it has been heated show while boiling, so it is unable to break down starch.

| 0 | 5 | 3 |
| :--- | :--- | :--- |T^{2} The student cut out a piece of agar from the clear area surrounding well \mathbf{D}. He obtained a solution of the substances contained in this piece of agar.

Describe a different biochemical test the student could use with this solution to confirm that amylase had affected the starch in the clear area surrounding well \mathbf{D}.

If starch has been broken down by amylase its hychrolegsed into maltose, which can be detected by the Benedicts reagent. Add Bundeicts solution to the lighid and heat to at least $60^{\circ} \mathrm{C}$. If simple sugars like maltose is present we will see a blow change red/green/orange.

Question 5 continues on the next page

The diameter of the clear area around well \mathbf{D} is 18 mm
In a different investigation, the student prepared a dilution of the amylase solution. He did this by mixing amylase solution and water in the volumes shown in Table 1.

Table 1

Amylase solution $/ \mathrm{cm}^{\mathbf{3}}$	Water $/ \mathrm{cm}^{\mathbf{3}}$
1.6	2.4

He prepared a starch-agar Peri dish identical to Figure 7, but with a single well. He added $0.2 \mathrm{~cm}^{3}$ of the diluted amylase solution to this well and left the Petri dish for 60 minutes.

| 0 | 5 | .4 | Use all of this information to predict the diameter of the clear area that will form around |
| :--- | :--- | :--- | :--- | the well containing the diluted amylase solution.

Give your answer to the nearest whole number.
Show your working.

$$
1.6+2.4=4
$$

$\Rightarrow 4 \mathrm{~cm}^{3}$ of Solution is made of this $4 \mathrm{~cm}^{3} 1.6 \mathrm{~cm}^{3}$ is anylase
$\frac{1.6}{4}=0.4$ so 40% of solution is amylase
lethe 100% is amylase 18 mn diameter

$$
\times 0.4\binom{100 \%=18 \mathrm{~mm}}{40 \%=7.2} \times 0.4
$$

Answer \qquad mm

| 0 | 5 | 5 |
| :--- | :--- | :--- | The student used a ruler to measure the diameter in mm of the clear area around well \mathbf{D} in Figure 7.

Use this information to explain why the answer to Question 05.4 should be given to the nearest whole number.
[1 mark]
The resolution of a ruler is down to $\pm 1 \mathrm{~mm}$ so cannot calculate value to higher accuracy.

0	6	The fruit fly is a species of small insect.

The fruit fly has a gene that codes for an enzyme called alcohol dehydrogenase (AD). AD catalyses the breakdown of alcohol when alcohol is in the insects' food.

The gene coding for $A D$ has two alleles, $A D^{F}$ and $A D^{s}$.

| 0 | 6 |
| :--- | :--- | \square The enzyme encoded by the $A D^{\boldsymbol{F}}$ allele catalyses the breakdown of alcohol faster than the enzyme encoded by the $A D^{s}$ allele. Suggest why.

Different genes cade for different ser primary
structure of sequence of ancizo acids. Therefore, when
proteins are folded this differede in primary structure
will cause different bonds to form, leading to a different tertiary or even quaternary structure. This determines the sinape of an ehrgme inchucling its active site. $A D^{+}$codes for an enzyme that problebly has a better shape to bid to stabstrate easier / faster, so mare enzure-substrate couplesces formed in a giver tine.

A scientist took a random sample of adult fruit flies from a population. He measured the frequency of the A^{F} allele in this sample (generation 0). He then:

- selected 100 of these insects at random and kept them in a container
- fed the insects food containing alcohol
- let the insects reproduce
- repeated these steps for 45 generations of fruit fly reproduction.

The scientist measured the frequency of the $A D^{F}$ allele in the 45 th generation.

0	6	2
2	Suggest why the scientist took his sample from the population at random.	

Avoid any bias in which individuals
are sampled.
\qquad

Table 2 shows the scientist's results.
Table 2

Generation of fruit fly reproduction	Frequency of $\mathbf{A D}^{\mathbf{F}}$
0	0.20
45	0.74

| 0 | 6 | .3 Alcohol is toxic to fruit flies. Suggest and explain why the frequency of the $A^{F}{ }^{\boldsymbol{F}}$ allele |
| :--- | :--- | :--- | changed during the 45 generations.

[4 marks]
Flies with $A D^{7}$ gere can beat down alcohol that is a risk to them. This means they have a selective advantage over $A D^{\prime}$ who are less efficient af it.
This advantage allows $A D^{\mp}$ gene caring idivichals to trafrodte survive better and Heproduce better than $A D^{\text {s }}$ individuals. By doing this they are passing on their $A D^{F}$ genes to next generation. Over generations this changes the collele frequency in the population, to make the $A D^{\top}$ gere more frequent.
\qquad
\qquad
\qquad

| 0 | 6 | .4 | Identify the type of selection investigated in the $\mathbf{4 5}$ generations of fruit fly reproduction. |
| :--- | :--- | :--- | :--- | Tick (\checkmark) one box.

No selection \square
Directional selection
\square

Random selection \square
Stabilising selection
selection towards getting better at breaking down alcohol.
\square
\square
\square
\square

0	7	1
Describe how an ATP molecule is formed from its component molecules.		

ATP is made up from a pentose sugar, an adenine base and three phosphats.
It is formed from ADP which is different by having orly 2 phosphates. ADP is converted into ATP by
ATPSynthase trough a condensation reaction.

A scientist investigated the effect of cyanide on the rate of amino acid uptake in two types of Escherichia coli, G and H.

- G cells produce enzymes involved in ATP production only on their cell-surface membrane.
- H cells produce enzymes involved in ATP production on their cell-surface membrane and in their cytoplasm.

Figure 8 shows her results.
Figure 8

| 0 | 7 | 2 |
| :--- | :--- | :--- | Use Figure 8 to calculate the percentage decrease in the rate of amino acid absorption by \mathbf{H} cells in $30 \mathrm{mmol} \mathrm{dm}^{-3}$ cyanide solution.

at no cyanide 2.8 units of amino acid absorption this drops to 1.2 at $30 \mathrm{mmol}_{\mathrm{mm}} \mathrm{dm}^{-3}$

$$
\begin{aligned}
2.8-1.2 & =1.6 \\
2.8 \rightarrow 1.6 & \text { So } \frac{1.6}{2.8}=0.571428 \text { Answer } 57.1 \\
& \Rightarrow 57.1 \%
\end{aligned}
$$

| 0 | 7 | 3 |
| :--- | :--- | :--- | Using Figure 8 and the information provided, what can you conclude about amino acid uptake by \mathbf{G} cells and by \mathbf{H} cells?

[3 marks]
Amino acid uptake is done by active transport bo the all. Cyanide has an effect of reducing ald at high enough concentrations stoping amino acid uptake. As Gey cells that can only produce ATP at the membrane stop taking up amino acids it suggest cyanide stops ATP roduction of ATP at the membrane which would be needed for achieve transport. But in H cells A TP production can carry on in the cytoplasm for some moretime.

Turn over for the next question

| 0 | 8 | A scientist investigated a sequence of reactions catalysed by two enzymes, COx and |
| :--- | :--- | :--- | HRP. Figure 9 shows this sequence of reactions.

Figure 9

| 0 | 8 | 1 |
| :--- | :--- | :--- | Use Figure 9 to identify all of the products formed when this sequence of reactions is completed.

[1 mark]
Gluconic acid, green pigment. and water.

| 0 | 8 | 2 |
| :--- | :--- | :--- | The scientist joined DNA molecules together to make tiny cages. The cages are exactly 20 nm long, 20 nm wide and 17 nm deep.

He trapped one GOx molecule and one HRP molecule together in each cage. The GOx molecule and HRP molecule fill 9\% of the cage volume.

The volume of a COx molecule is eight times larger than an HRP molecule.
Use this information to calculate the volume of a COx molecule. Give the appropriate unit with your answer.

Show your working.

(1)

Volume $=20 \times 20 \times 17$
$=6800 \mathrm{~nm}^{3}$

$$
\begin{aligned}
& \mathrm{CO}_{\mathrm{gO}}>^{18} H R P \\
& \mathrm{CO}+H R P=9 \% \text { of cage. } \\
& { }^{\text {(2) }} \frac{\frac{6800 \mathrm{~nm}]}{100}}{} \times 9=612 \mathrm{~nm}^{3} \\
& \text { (3) } \frac{612}{9} \times 8=544 \mathrm{~nm}^{3}
\end{aligned}
$$

Answer \qquad $544 \mathrm{~nm}^{3}$

The scientist investigated the activity of GOx and HRP enzymes when they are:

- trapped inside cages (\mathbf{T}) and
- not trapped (NT), but free in solution with no cages.

Figure 10 shows his results.
The error bars show ± 2 standard deviations.
± 2 standard deviations include 95% of the data.
Figure 10

| 0 | 8 | 3 | What can you conclude from Figure 10 about the effect of trapping GOx and HRP |
| :--- | :--- | :--- | :--- | :--- | :--- | inside cages?

As the error bars dint overlap we can see there is a significantly higher relative activity when the enzymes are trapped. The error bars represent the standard deviations that also dona curlap.
\qquad
\qquad
\qquad
\qquad
\qquad

0	8	4 The design of the scientist's investigation did not include a suitable control.

Suggest a suitable control.
A treatment where there is no enzagme actioty, so a denatured form of the eningmes.

Turn over for the next question

0	9	$\mathbf{1}$ Explain five properties that make water important for organisms. ${ }^{2}$.

Water is important to all forms of life. This is due to its properties like being a great solvent, so metabolic reactions can occur it it easier.
It also has a high heat capacity, this allows organisms a buffer from Gluchations to temperature change.
Water molecules have a high level of cohesion between them. This helps to support water columns in plants, which they rets on for sopor structure. It also produces sworace tension supposing the structure of small organisms as well.
Lastly but not least its an important metabolite itsey, used in hydrolysis reactions as well as is photosynt thesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	9	2

DNA is found in a double helix that needs to have its hydrogen bands broken between base pairs before replication. This is done by DNA halicase. Once the two strands are seperated each strand can be used as a template to use in semi conservative replication. This means that on replicated DNA one strand of the DNA will be from the Original DNA molecule, while the other strand was built by other nucleotrcles, based on the original as a template. You can use the original staurds as a temple template as nucleotides line up complementary to their base pairs. A pairs with T and $C_{\text {pairs with } G \text { and wise versa. }}$. When free nucleotides have lined up complementary is base pairing to the template strand DNA polymerase joins these neveleatides together to form the second strand. These nucleotides are joined by the formation of phosphodiester bonds,

