AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

BIOLOGY

Paper 1

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

| 0 | 1 |
| :--- | :--- | Figure 1 shows part of a DNA molecule.

Figure 1

| 0 | 1 | 1 |
| :--- | :--- | :--- | Name the type of bond between:

complementary base pairs \qquad hydrogen bonds adjacent nucleotides in a DNA strand \qquad

| 0 | 1 | 2 |
| :--- | :--- | :--- | The length of a gene is described as the number of nucleotide base pairs it contains.

Use information in Figure 1 to calculate the length of a gene containing 4.38×10^{3} base pairs.

$$
\begin{gathered}
\frac{1.7 \mathrm{~nm}}{5}=0.34 \\
0.34 \times 4.38 \times 10^{3}=1489.2 \\
\Rightarrow 1489
\end{gathered}
$$

Answer \qquad nm

| 0 | 1 | 3 |
| :--- | :--- | :--- | Describe two differences between the structure of a RNA molecule and the structure of an mRA molecule.

1 their shape: IRNA is folded into 'clover'shape while MRNA remains linear.
2 ERNA has amino acid binding site, while MRNA does not.

| 0 | 1 |
| :--- | :--- | 4 In a eukaryotic cell, the structure of the mRNA used in translation is different from the structure of the pre-mRNA produced by transcription.

Describe and explain a difference in the structure of these mRNA molecules.
\qquad both exons and introns. But after splicing the produced mRNA ont has the exons in it,
\qquad
\qquad
\qquad

Turn over for the next question

Figure 2

0	2	1
Name structures \mathbf{A} and \mathbf{B}.		

A attachment protein
B \qquad capsid

0	2	2

Attachment protein on the surface of HIV helps the virus to attach to receptors on a helper T cell. Once attached genetic material is injected into cell in the form of RNA. This RNA gets converted to DNA using an enzyme called reverse transcriptase. This DNA can then be expressed by the cell as viral proteins, such as enzymes. Different components of the virus are produced by the cell and assembled. Once virus is complete it gets released from the cell to infect other cells.

0	3	$U r o n e m a ~ m a r i n u m ~ i s ~ a ~ s i n g l e-c e l l e d ~ e u k a r y o t i c ~ o r g a n i s m . ~ F i g u r e ~$
3		

| 0 | 3 |
| :--- | :--- | \square 1

Explain why it is not possible to determine the identity of the structures labelled \mathbf{X} using an optical microscope.

Figure 3
 of U. marinum taken through an optical microscope.

0	3	3	Calculate the actual length of the cell shown between \mathbf{Y} and \mathbf{Z} in Figure 3.

The magnification of the image is $\times 900$
Give your answer in $\mu \mathrm{m}$ and to 2 significant figures.
Show your working. Actual $=\frac{\text { Image }}{\text { Magnification }}$

$$
\begin{aligned}
& y \rightarrow Z=2.9 \mathrm{~cm}=29 \mathrm{~m}=29000 \mu \mathrm{~m} \\
& A=\frac{29000 \mu \mathrm{~m}}{900}=32.2^{n} \mu \mathrm{~m} \\
& 2 \mathrm{sf} \Rightarrow \frac{32 \mu \mathrm{~m}}{\text { Answer }} \frac{32}{\mu \mathrm{~m}}
\end{aligned}
$$

| 0 | 3 | 4 |
| :--- | :--- | :--- | In large cells of U. marinum, most mitochondria are found close to the cell-surface membrane. In smaller cells, the mitochondria are distributed evenly throughout the cytoplasm. Mitochondria use oxygen during aerobic respiration.

Use this information and your knowledge of surface area to volume ratios to suggest an explanation for the position of mitochondria in large U. marinum cells.
[2 marks]
Larger cells have smaller surface area to volume ratio taking oxygen langer to defuse to central parts. So, by having the mitochondria close to the surface the diffusion pathway is reduced, so enough oxygen can reach it for what it heeds in respiration.

| 0 | 4 |
| :--- | :--- |\quad This question is about mitosis in cells.

Figure 4 shows the arrangement of the genetic material in a cell during prophase.
Figure 4

0	4	1

Chromosomes are visible as they are condensing to get ready for replication.
\qquad
\qquad
\qquad
\qquad

0	4	2	The diploid number of chromosomes in the body cell of an insect species is four.

Tick (\checkmark) the box next to the diagram A, B, C or \mathbf{D} that represents the appearance of chromosomes in a cell during metaphase in this species.

In metaphase
chromasomes are not pulled aport
yet. yet.

0	4	3	Name the fixed position occupied by a gene on a DNA molecule.

Low

| 0 | 4 |
| :--- | :--- | \square Describe how a gene is a code for the production of a polypeptide. Do not include information about transcription or translation in your answer.

gene is coded by a sequence of base pairs.
This sequence contains information on how to what sequence to join amino decids in. The nucleotide sequence is red in triplets and each triplet is converted into an amino acid in the polypeptide chain.
\qquad
\qquad
\qquad

0	5	.1

Glycogen is a polymer of glucose, so glucose molecules can easily be taken off thous hydrolysing bonds in glycogen. As it is highly pranced it can be hydrolysed much faster as more ends are exposed for io.
Its a large insolvable molecule so cant be lost from the cell easing and does not affect its water potential.
It is highly compact so dols of glucose can be stored in a small space.
\qquad
\qquad
\qquad
Figure 5 shows the primary structure of part of a polypeptide. Each shape represents an amino acid. Identical amino acids have the same shape.

Figure 5

| 0 | 5 | 2 |
| :--- | :--- | :--- | Name the type of peptidase which will hydrolyse the bond labelled \mathbf{G} in Figure 5.

end peptidase

0	5	3

[1 mark]
3 (3 different amino acids as 3 different shapes, each amino acid has a clifferent R group)

A scientist used an enzyme to digest a polypeptide containing 101 amino acids. The digestion produced a range of smaller polypeptides.

The scientist determined the number of amino acids in each of the polypeptides produced. He also counted the number of polypeptides of each length.

Table 1 shows some of the scientist's results.
Table 1

Number of amino acids in polypeptide	Number of polypeptides of each length	
	5	2
	6	
	15	3
	20	

| 0 | 5 | 4 |
| :--- | :--- | :--- | Use the information in Table 1 to calculate the number of polypeptides:

| 0 | 6 | 1 |
| :--- | :--- | :--- | system from a kidney to the lungs.

Do not include descriptions of pressure changes in the heart or the role of heart valves in your answer.

From the kidney the red blood cell travels away through the renal vein. bi' It flows into the inferior vena cave that travels back to the right side of the heart. It enters the heart into the right atrium, from which its pushed over into the right ventricle. The right heart pumps blood from these te the pulmonary artery which takes blood from the heart to the brigs lings.

Figure 6 shows a section through two types of blood vessels observed using an

Figure 6

0	6	2

Explain your answer.

Type of blood vessel__ Vein
Explanation Itas a vide lumen with thin walls so blood travels through it at low pressure.

Question 6 continues on the next page

0	6	3	Tissue fluid is formed from blood at the arteriole end of a capillary bed.

Explain how water from tissue fluid is returned to the circulatory system.

When tissue fluid us forced out of the blood vessle, certain proteins remain in the blood that are to bigto leave. These create a negative water potential in relation to tissue fluid. This causes water to move back inter the blood vessle through osmosis.
Any water that is not reabsorbed by osmosis is collected by the lymphatic system and returned te the blood.
\qquad
\qquad
\qquad

A meadow is an area of grassland with a wide range of plant and animal species.
A student investigated whether cutting some of the plants in a meadow had any effect on the biodiversity of insects in that meadow.

The student created two sample areas, called plots, in the meadow. Each plot measured $10 \mathrm{~m} \times 5 \mathrm{~m}$

The student:

- did not cut plants in plot 1
- cut the plants in plot 2 with a lawn mower once a week.

After 10 weeks, the student captured all of the organisms of four insect species found in each of these plots.

Figure 7 shows the student's results.
Figure 7

| 0 | 7 | 1 |
| :--- | :--- | :--- | Use the information in Figure $\mathbf{7}$ to calculate the index of diversity for the insects captured in plot 1.

The formula to calculate the index of diversity (d) is

$$
d=\frac{N(N-1)}{\Sigma n(n-1)}
$$

where N is the total number of insects of all species and n is the total number of insects of each species.

Give the answer to 2 significant figures and show your working.

$$
\begin{aligned}
& 79 \text { individuals in total } \rightarrow N(N-1)=79 \times(79-1) \\
& =6162 \\
& 22 \text {-fly } \longrightarrow n(n-1)=22(22-1)=22 \times 21=462 \\
& 41 \text {-beetle } \rightarrow 1640 \\
& 14 \text {-bee } \longrightarrow 182 \\
& \text { 2- leaf hopper } \rightarrow 2 \\
& d=\frac{6162}{2286}=2.695 . \\
& \sum n(n-1)=462+1640+182+2=2286
\end{aligned}
$$

| 0 | 7 | 2 | $T h e ~ s t u d e n t ~ c o n c l u d e d ~ t h a t ~ c u t t i n g ~ p l a n t s ~ w i t h ~ a ~ l a w n ~ m o w e r ~ i n c r e a s e d ~ t h e ~ s p e c i e s ~$ |
| :--- | :--- | :--- | :--- | richness of insects in that meadow.

Use information in Figure 7 to explain why the student's conclusion is incorrect.
[1 mark]
The number of species is still 4 (leah hope, bee, beetle, fly) after cutting. Only the number of individuals change.

Question 7 continues on the next page

| 0 | 7 | 3 |
| :--- | :--- | :--- | The student wanted to use the data from plot 1 to estimate the total number of the beetle species in the meadow.

Suggest how the student should use the data from plot 1 and other information provided to estimate the total number of the beetle species in the meadow.

They first have to calculate the area of the plot. This is 10 m by 5 m so $50 \mathrm{~m}^{2}$. Then he has to calculate the total area of the whole medow. They then can calculate how many times would the plot fit onto the area of the meadow. So divide the aura of the neddow by the area of the plot. Use this number then to muliply it by 41 , as this is the number of beetles you would expect to find in each area, the size of a plot.
1

0	8	An unfertilised chicken egg is a single cell surrounded by a shell.

A student investigated osmosis in chicken eggs. She dissolved the shells of two eggs without damaging the cell contained inside the shells. She then:

- measured the mass of each egg without its shell
- covered one egg with vinegar and covered the other egg with a sugar solution
- kept both eggs covered at $30^{\circ} \mathrm{C}$ for 24 hours.

After 24 hours, she measured the mass of each egg.
The student designed Table 2 and added her results to this table.
Table 2

Initial mass of egg / g	Final mass of egg /g	Name of solution covering egg	Ratio of final mass to initial mass
66	85	Vinegar	$1.29: 1$
60	43	Sugar	$0.7: 1$

| 0 | 8 | 1 | Suggest one improvement to the design of Table 2 and one improvement to the way |
| :--- | :--- | :--- | :--- | she presented the data contained in Table 2.

[2 marks]
Improvement to design of table \qquad Have the name of the Solution
in the first column as this is the independent variable.

Improvement to presentation of data she used different number of decimal places to in the ratios, she should use the same number of decimal places for both.

| 0 | 8 | 2 | Suggest and explain an advantage of carrying out this investigation at $30^{\circ} \mathrm{C}$ rather |
| :--- | :--- | :--- | :--- | than at $20^{\circ} \mathrm{C}$.

At a warmer temperature particles will have more kinetic enerys, so their movement uncle be faster.
As osmosis is tooling place the change in mass would be noticable pricker.

| 0 | 8 | 3 |
| :--- | :--- | :--- | The student concluded from the information in Table 2 that the water potential of the solution inside the egg is higher than the water potential of the vinegar.

Is the student's conclusion correct? Justify your answer.
No, the eggs end mass higher then its initial mass. This suggest water has moved inter the egg by osmosis not out of it.
Therefore, the water potential of the egg must be Dower than the Vinegar.
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page.

| 0 | 8 | -4 |
| :--- | :--- | :--- | The student wanted to determine the water potential of chicken eggs. She:

- produced a dilution series of sugar solution
- followed the procedure described on page 20.

She calculated the final mass to initial mass ratio of the egg covered in each sugar solution.

How would you advise the student to use her calculated ratios to determine the water potential of the eggs?

In your answer state the independent variable in the student's investigation.

The independent variable is the concentration of the sugar solution, as this is what she is changing te see a change in her results.

She should plot a calibration curve of her results. She can then use this curse to interpolate from when the ratio is 1 . She can from that read off a value for the concentration and convert that concentration into water potential.
\qquad
\qquad
\qquad

Read the following passage.
Kidney cells produce a glycoprotein hormone called erythropoietin (EPO). An EPO molecule contains 165 amino acids and approximately 50% of its mass is carbohydrate.

EPO is transported in the blood and stimulates the bone marrow to produce red blood cells. In this way, enough red blood cells are produced to maintain 5 the blood's oxygen-carrying capacity.

Some athletes choose to increase their blood EPO concentration by injecting synthetic EPO. This practice is called blood boosting and is banned in sport as a form of drug abuse. Athletics' authorities use a programme of drug testing to detect athletes who have injected EPO. In this programme, an ELISA test is 10 performed on urine samples to measure the concentration of EPO in the athlete.

Two types of monoclonal antibody are used in this ELISA test:

- anti-human EPO antibody, prepared by injecting human EPO into mice
- anti-mouse antibody, prepared by injecting anti-human EPO antibody into goats. An enzyme is attached to the anti-mouse antibody.

Use the information in the passage and your own knowledge to answer the following questions.
 Identify two organelles in kidney cells that enable the production of EPO.

1 Rough endoptagnic reticulum
2 golgi apparatus

0	$\mathbf{9}$	$\mathbf{2}$ Explain the biological advantage to athletes of injecting synthetic EPO (lines 7-8).

> By injecting EPO there will be a boost in their red blood cell numbers. Red blood cells cary oxygen, so more blood cells can cary more oxygen to cells. This allows athletes to respire aerobically longer when exercising, hence producing moe ATP and less lactic acid, Fariguling later.

| 0 | 9 | 3 |
| :--- | :--- | :--- | (line 14).

antigens from the human EPO get displayed on the surface of phagoates/B cells. This causes helper Taels to stimulate B cells to divide rapidly. Plasma cells then produce antibodies that are specific to human EPO.

| 0 | 9 | 4 | Describe the roles of anti-human EPO antibody and anti-mouse antibody with enzyme |
| :--- | :--- | :--- | :--- | attached (lines 14-16) in producing a positive result for EPO in the ELISA test.

Role of anti-human EPO antibody. This attaches to the L=PO (the antigen on the surface of the EPO) to show its presence.

Role of anti-mouse antibody with enzyme attached This attaches to the anti human antibody. This has an enzymes attached which catalyses a reaction causing the colour change if non human EPO is present.

0	9	5	Some people object to using monoclonal antibodies in testing programmes.

Use information in the passage to suggest why.
Ethical issues due to welfare of animals like: mice/goats used in the production of these antibodies.

