AQAE

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

BIOLOGY

Paper 2

Friday 22 May 2020
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

Answer all questions in the spaces provided.

0	1	1

A student investigated variation in snail shell height in two populations of snails.
Give two ways in which the student could ensure his samples would provide a reliable measure of the variation between individuals in each population.

1
Select individuals at random
\qquad

2 Howe a large sample size of individuals sample
measured.
\qquad

| 0 | 1 | 2 |
| :--- | :--- | :--- | The student could determine the median, mode and range from his measurement of shell heights in these populations.

Give two other statistical values the student could calculate from his measurement of shell heights in these populations.

1 \qquad
2 \qquad

0	1	3	Name the taxon in the hierarchy of classification represented by:

1 Littorina \quad genes

| 0 | 1 | 4 |
| :--- | :--- | :--- | The student noticed there was a difference in shell height between these populations of snails. He wanted to investigate if the difference was significant.

Give a suitable null hypothesis to use in his investigation and name the statistical test to use with these data.
[2 marks]
Null hypothesis There is no significant difference between
\qquad the mean shell height for the two populations.

Statistical test t-test
\qquad
\qquad

Turn over for the next question

0
1
Describe how a phosphodiester bond is formed between two nucleotides within a DNA molecule.
[2 marks]
\qquad phosphate group and decxiribose group of 2 nucleotides. This is a condensation reaction, Releasing waiter.
\qquad
\qquad

| 0 | 2 | 2 | T |
| :--- | :--- | :--- | :--- | The relationship between the numbers of guanine bases (G), adenine bases (A), thymine bases (T) and cytosine bases (C) in these two strands of DNA is shown in the following equation.

$$
G=4(A+T)-C
$$

Use this information and your understanding of DNA structure to calculate the maximum number of amino acids coded by this gene.

Show your working.

$$
\begin{aligned}
& 168=4(A+T)-168 \\
& 336=4(A+T) \\
& (A+T)=84
\end{aligned}
$$

$$
\frac{\left(\frac{84+168+168}{2}\right)}{3}=70
$$

[2 marks]

Answer 70

0	2	$\mathbf{3}$ Name the protein associated with DNA in a chromosome.

histone (s)

> molecule are separated. Each then acts as a template for the formation of a new complementary strand.

Describe how the separation of strands occurs.

> [2 marks]

DNA helicase breaks the hydrogen bonds between the bases, that holds the two strands together.
\qquad
\qquad
\qquad

Turn over for the next question

0	3	1

[2 marks]
Arteride has a thick muscular wall like an
autory, but has a thinner homed. The muscles contract in its wall resticting the limens width, so restricting blood How, stowing dow the
\qquad

Figure 1 shows heart valves during one stage of a cardiac cycle.
Ventricles are visible through the open valves.
Figure 1
Valves between ventricles and arteries

| 0 | 3 | 2 |
| :--- | :--- | :--- | What can you conclude from the appearance of valves in Figure $\mathbf{1}$ about heart muscle activity and blood movement between:

1. ventricles and arteries?

Ventricles relaxed as values ore shut. This
is to prevent blood flowing back from the arteries into the ventricle
\qquad
\qquad
\qquad
2. atria and ventricles?

Atria is contracted, ventrica is relaxed. Blood flows through values from atria to ventrica.

Question 3 continues on the next page

Capillary

[1 mark]

| 0 | 3 | $\mathbf{3}$ Tick (\checkmark) one box next to the blood vessel carrying blood at the lowest blood pressure. |
| :--- | :--- | :--- | :--- |

Pulmonary vein

Renal vein

Vena cava

| 0 | 3 | 4 | A scientist measured the heart rate and the volume of blood pumped in a single heart |
| :--- | :--- | :--- | :--- | beat (stroke volume) of an athlete before exercise and calculated the cardiac output.

Cardiac output is calculated using this equation.

$$
\text { cardiac output }=\text { heart rate } \times \text { stroke volume }
$$

Her results are shown in Table 1.
Table 1

Heart rate $/$ beats minute ${ }^{-1}$	Stroke volume $/ \mathbf{c m}^{3}$	Cardiac output $/ \mathbf{c m}^{\mathbf{3}}$ minute $^{-1}$
62	80	4960

After exercise, the athlete's stroke volume increased by 30% and the cardiac output was $13832 \mathrm{~cm}^{3}$ minute ${ }^{-1}$

Calculate the athlete's heart rate after exercise.
Give the answer to 2 significant figures. Show your working.
Heart tate = Cardiac output [2 marks]
Stroke voluense.
$=\frac{13832 \mathrm{~cm}^{3} \mathrm{~min}^{-1}}{(80 \times 1.3) \mathrm{cm}^{3}}$
$=133$ min beats $/ \mathrm{min} \Rightarrow 2 s f=130$

Heart rate \qquad beats minute ${ }^{-1}$

| 0 | 4 | A student investigated the effect of ethanol, hydrochloric acid and temperature on the |
| :--- | :--- | :--- | loss of red pigment from beetroot cells.

During the procedure, the student:

- added $10 \mathrm{~cm}^{3}$ water into one test tube
- added $10 \mathrm{~cm}^{3}$ ethanol into a second test tube
- added $10 \mathrm{~cm}^{3}$ hydrochloric acid into a third test tube
- put the three tubes into a $25^{\circ} \mathrm{C}$ water bath
- cut four cylinders of tissue from a beetroot
- put a cylinder into each tube and fitted bungs
- added $10 \mathrm{~cm}^{3}$ water into a fourth test tube and put this tube into a $70^{\circ} \mathrm{C}$ water bath
- placed the fourth cylinder into this tube and fitted a bung
- later removed the cylinders from the tubes
- estimated the intensity of red pigment in each solution by eyesight.

| 0 | 4 | 1 |
| :--- | :--- | :--- | kept at $25^{\circ} \mathrm{C}$ throughout her experiment.

[1 mark]
measure the temperature at given intervals and
adjust temperature to correct to $25^{\circ} \mathrm{C}$ if not at $25^{\circ} \mathrm{C}$
\qquad

0	4	2

1 mass of the cylinders used

2 Time spent in the solution.

Question 4 continues on the next page

0	4	3

Figure 2 shows some of the scale graduations on the side of this measuring cylinder.
Figure 2

What is the uncertainty of taking a reading of $10 \mathrm{~cm}^{3}$ with this measuring cylinder? Suggest how you could reduce the uncertainty calculated.
\qquad

Reducing uncertainty llse Lhstmement with Smaller
cintervals.
\qquad

A different student used the same procedure and she controlled all variables appropriately. Her results are shown in Figure 3.

Figure 3

| 0 | 4 | 4 |
| :--- | :--- | :--- | water, ethanol, hydrochloric acid and different temperatures?

Provide explanations for your conclusions.
[4 marks]
Water causes no damage to cells as no colow change suggests no pogment was released. However, water at $70^{\circ} \mathrm{C}$ causes the most damage. Darkest colour suggest most pogment released. This is duce to denaturing and damaging of cell surface pratering/Channel proteins increasing the permiability of a cell membrane. Ethanol caused some damage, as it dissolves lipids, so could disolve some of the phospholipid bilayer. Acid caused some damage as it alters swfuce proteins with low pH.
Answer space for this question continues on the next page

| 0 | 5 | 1 |
| :--- | :--- | :--- | A student investigated starch hydrolysis using the enzyme amylase.

During the procedure, the student:

- treated the starch to make it soluble
- prepared $10 \mathrm{~cm}^{3}$ of different concentrations ($\mathrm{mg} \mathrm{dm}^{-3}$) of starch solution
- added an identical concentration of amylase to each starch solution
- measured the time in minutes to completely hydrolyse starch.

He repeated the procedure and calculated the mean time to completely hydrolyse starch in each concentration of starch solution.

Draw a table the student could use to record all of his results.
You only need to show completed column headings.

0	5	2	Describe the results you would expect the student to obtain.

As starch concentration increases Fine to hydrolyse starch increases.
\qquad

| 0 | 5 | 3 | A competitive inhibitor decreases the rate of an enzyme-controlled reaction. |
| :--- | :--- | :--- | :--- | Explain how.

An inhibitor has a simitar shape to the substrate, so it can bind to the active site of the enzyme. This prevents the formation of an ensure - substrate complex forming, hence eth to inhibiting the reaction.
\qquad
\qquad
\qquad
\qquad

When bread becomes stale, the structure of some of the starch is changed. This changed starch is called retrograded starch.

Scientists have suggested retrograded starch is a competitive inhibitor of amylase in the small intestine.

Assuming the scientists are correct, suggest how eating stale bread could help to reduce weight gain.
more retrograde Starch will bind to amylase and inhibit it from breaking down starch. So less stardis hydrolysed into maltose. Starch
cant be absorbed, so less sugars like gte cose are absorbed so less avilable to cells.
\qquad
\qquad
\qquad
\qquad

A scientist investigated the growth of farmed trout. She determined the median mass of a large population of trout at intervals. She started measuring on the day the newly hatched fish began feeding. Her results are shown in Figure 4.

Figure 4

The best fit line shown in Figure 4 is represented using this equation.

$$
\text { median fish mass }=(m \times \text { days feeding })+50
$$

where m is the gradient of the best fit line.

| 0 | 6 | 1 Use Figure 4 and the equation to calculate the median mass of fish after 195 days' |
| :--- | :--- | :--- | feeding.

Show your working. grad= 4.75

$$
\begin{gathered}
(4.75 \times 195)+50 \\
=976.25 \\
=980 \mathrm{mg}
\end{gathered}
$$

$$
\text { Answer } \quad 980 \quad \mathrm{mg}
$$

| 0 | 6 | 2 |
| :--- | :--- | :--- | A trout body cell contains 80 chromosomes.

Table 2 shows the number of chromosomes and the mass of DNA in different nuclei. All the nuclei are from the same trout.

Complete Table 2.
[2 marks]
Table 2

Nucleus	Number of chromosomes	Mass of DNA I arbitrary units
At prophase of mitosis	80	50
At telophase of mitosis	80	25
From an egg cell	40	12.5

0	6	3	Give one reason why trout eggs produced by meiosis are genetically different.

Crossing aver of chromosomes introduces feather diversity.

Question 6 continues on the next page

A trout body cell contains 80 chromosomes.
Farmed female trout are treated so that they produce diploid egg cells.

| 0 | 6 | 4 |
| :--- | :--- | :--- | farmed female trout and untreated farmed male trout.

$$
80+\frac{80}{2}=80+40=120
$$

Number of chromosomes \qquad 120

| 0 | 6 | 5 |
| :--- | :--- | :--- | The offspring produced from farmed trout are sterile. Suggest and explain why. [2 marks]

Tor mane extra copies of Chromosomes so homologous chromosomes cant pair up to fam gametes for meiosis.
\qquad
\qquad
\qquad

HIV attacks helper Tels. Helper Tels are heeded to activate B cells to divide rapids to form plasma cells. So less antibodies weill be produced.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page
 HIV particles in blood taken from a person with AIDS. The results are shown in Figure 5.

Figure 5

Symptoms of AIDS occur when the number of T cells is below 200 cells mm^{-3}
Use all of this information to evaluate the effectiveness of the drug in treating AIDS. [5 marks]

The number of Taels is less than 200 at 4 months, suggesting the drug is not effective. HIV particles remain at constant lee, so they donn get removed by the drug. There is no repeats and no statistical test performed. Results could be not significant at all and have different effect on a different individual.

However, 4 it seems to be effective after 4 months, when T cell numbers steadily increase to beyonce starting Tell numbers over tinge. It is staying
above 200 so seems to be effective.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 8 | $\mathbf{1}$ | A scientist measured the pressure in a phloem tube in a willow plant stem. |
| :--- | :--- | :--- | :--- | He repeated his measurements to obtain nine readings.

His results are shown in Table 3.

Table 3

Phloem pressure / arbitrary units								
7.4	8.0	7.0	8.6	8.2	9.3	7.4	9.1	8.8

The percentage error of the mean phloem pressure in this phloem tube is calculated using this equation.

$$
\text { Percentage error }=\frac{\text { uncertainty in measurement }}{\text { mean }} \times 100
$$

The uncertainty in measurement is half the range of the measured values.
Calculate the percentage error of the mean phloem pressure in this phloem tube.
Show your working.

$$
\begin{aligned}
& \text { range }=2.3 \quad \frac{2.3}{2}=1.15 \\
& \text { mean }=\frac{7.4+8.0+7.0+8.6+8.2+9.3+7.4+9.1+88}{9}
\end{aligned}
$$

$=8.2$

$$
\frac{1.15}{8.2} \times 100=14,02439=14
$$

Percentage error \qquad \%

| 0 | $\mathbf{8}$ | $\mathbf{2}$ The mass flow hypothesis is used to explain the movement of substances through |
| :--- | :--- | :--- | :--- | phloem.

Use your understanding of the mass flow hypothesis to explain how pressure is generated inside this phloem tube.

Sucrose gets transported into the phloem by active transport. This reduces the water potential of the phloem. So water moves in by osmosis, Creating pressure in the phloem.
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

Figure 6

Phloem pressure / arbitrary units

Rate of water movement in xylem $/ \mathrm{kg}^{\text {hour }}{ }^{-1}$

Describe the relationship between phloem pressure and the rate of water movement in xylem in this plant.

As phloem pressure falls water movement
increases.
fnversly proportional

| 0 | 8 | .4 | Phloem pressure is reduced during the hottest part of the day. Use information in |
| :--- | :--- | :--- | :--- | Figure 6 along with your understanding of transpiration and mass flow to explain why.

At higher temperature there is more evaporation,
So more transpiration. Hence, more water is lost through the stomata. Therefore, less water is moving from the seglem to the phloem.
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Describe the processes involved in the absorption and transport of digested lipid molecules from the ileum into lymph vessels.

The digested lipids form micelles, then which are made up of monoglucerides, bile salts and fatty acid chains. This makes fatty acids and monogly asides more solvable to water so they can be transported. They then get absorbed by single molecule level diffusionsinte the cells. The cells then use these as the building blocks to combine a mono. ghscericle with 2 more fatty acid chains to form a trighycerides againinsude the cells. These are then stored up in vesicles that move to the cell membrane of the cell-
\qquad

Describe how the structure of a protein depends on the amino acids it contains.
The structure of proteins is determined by the sequence in while amine acids are joinediup into the paly peptide chain. Different amino acids have different R groups, which defernite what type of interactions they can howe with other amino acids. Hes

The secondary structure is formed by hydrogen bonds and dijuelide bridges. While the tertions structure of further folding is highls influenced by the R groups of each conino acid, Some/Most proteins are made up from several polypeptide chains folded together into dertiong structure and then combined. This is called the quaternoms structure.

These structures ave highly specific, forming lenique popeesfic shapes for enzyme active sites, antibally binding sites and many more:
\qquad
\qquad
\qquad
\qquad

