AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
declare this is my own work.

AS

BIOLOGY

Paper 1

Tuesday 19 May 2020
Afternoon
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

0	1

Figure 1 shows the structure of molecules found in organisms.
Figure 1

A

C

B

D

| 0 | 1 | $\mathbf{1}$ Complete Table 1 by putting the correct letter, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, in the box next to each |
| :--- | :--- | :--- | statement. Each letter may be used once, more than once, or not at all.

Table 1

Letter	Statement
B	is a monomer in an enzyme's active site
D	is a monomer in cellulose
C	is produced during photosynthesis and respiration
B	forms a polymer that gives a positive result with a biuret test

0 \square 1.

2 Raffinose is a trisaccharide of three monosaccharides: galactose, glucose and fructose. The chemical formulae of these monosaccharides are:

- galactose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- glucose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- fructose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Give the number of carbon atoms, hydrogen atoms and oxygen atoms in a molecule of raffinose.

Do not write outside the

| 0 | 1 |
| :--- | :--- | \square

3
A biochemical test for reducing sugar produces a negative result with raffinose solution.

Describe a biochemical test to show that raffinose solution contains a non-reducing sugar.

Mix sample with an avid anthem neutralise with an alkali. Add Benedicts reagent and hew in a water both. If reducing sugar is present ted percipitate will forms.
\qquad
\qquad
\qquad
\qquad
\qquad

0	2	1	Explain the arrangement of phospholipids in a cell-surface membrane.

\qquad
with fatty acid tails pointing inwards (byrophabic) and phosphate heads pointing outwards (hydrophilic).
\qquad
\qquad
\qquad
\qquad

0	2	2

Forked between a molecule of glycerol and a fatty acid chairs through a condensation reaction.
\qquad
\qquad
\qquad

| 0 | $\mathbf{2} .3$ State and explain the property of water that helps to prevent temperature increase in a |
| :--- | :--- | :--- | cell.

Property High specific heat capacity
Explanation Needs a lat of energy to therease the temperature by just a little. This buffers changes, mairtwiving a mar constant environments

0	3	$\mathbf{1}$ Describe how a phagocyte destroys a pathogen present in the blood.

They attach to their antigens on the cheface there engulf them. This craps the cell aroid the phatogen, enclosing it into a vesicle. The's vesicle fuses with the Eysosome that contains hydrolyse enagmes. These enzymes break down the pathogen into its components.
\qquad
\qquad
\qquad

0	3	$\mathbf{2}$ Give two types of cell, other than pathogens, that can stimulate an immune response.

1 Transplanted cells
2 Cancer celts

Question 3 continues on the next page

0	3	3	Figure 2 shows the structure of an antibody.

Figure 2

Label Figure $\mathbf{2}$ with an \mathbf{X} to show where an antigen-antibody complex forms.

0	$\mathbf{3}$.	$\mathbf{4}$

What is the role of the disulfide bridge in forming the quaternary structure of an antibody?

Jotuns Joins together 2 strands of polypeptide chains. Several bridges join all 4 chains together.

0	4.	1

Outline the role of organelles in the production, transport and release of proteins from eukaryotic cells.

Do not include details of transcription and translation in your answer.

DNA codes for proteins and stored in the nucleus. Ribosomes translate this base sequence cade chto a polypeptide chain. Some re'bosomes are found on the surface of the rough endoplasmic retoicilum, involved in protein synthesis's
Golgi apparatus is involved in modifying proteins,
by adding easboly crates to their- structures. They then get packaged into vesicles, which transport proteins. These vesides eventually fuse with the cl membrane releasing the proteins. on
\qquad

Question 4 continues on the next page

Figure $\mathbf{3}$ is a transmission electron micrograph of a plant cell.
Figure 3

0	4	2
2	Suggest why a nucleus is not visible in Figure 3.	

\qquad up clearly in different cotter colour -

0	4	3

Organelle S \qquad

Organelle T \qquad | 0 | 4 |
| :--- | :--- | 4. 4

Give one advantage of viewing a biological specimen using a transmission electron microscope compared with using a scanning electron microscope.

We ore able to view internal structures of the cell, ad t only the surface.
\qquad

| 0 | 4 | 5 |
| :--- | :--- | :--- | of a leaf.

The shaded area of cell U is $150 \mu \mathrm{~m}^{2}$
The total area of the upper surface of the leaf is $70.65 \mathrm{~cm}^{2}$

Figure 4

Calculate the number of cells in the upper surface of the leaf.
Give the answer in standard form.
Assume that all these cells are identical in size.
Show your working.
$7 \quad 1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}=1 \times 10^{8}$

$$
70.65 \mathrm{~cm}^{2} \Rightarrow 7.065 \times 10^{9}
$$

$$
\frac{7.065 \times 10^{9}}{150}=4.71 \times 10^{7}
$$

\qquad

0	5	1 Describe and explain the mechanism that causes lungs to fill with air.

The intercostal muscles on the external side contract, as well as the diaphragm contracts and flattens. The's pushes the chest upwards and out. Increases the volume of the Cavite decreasing the pressure. Aus moves in from outside, where our pressine is higher.
\qquad
\qquad
\qquad

A scientist observed sections of lung tissue using an optical microscope.
Figure 5 shows one of these sections.
K is an air-filled tube and L is a blood vessel.
This figure has been removed due to third-party copyright restrictions.
\square
5 \square 2

Identify the structures labelled \mathbf{K} and \mathbf{L}.

K \qquad Broncide

L \qquad Artery

| 0 | 5 | 3 | Two solutions often used to stain tissues are haematoxylin solution and iodine |
| :--- | :--- | :--- | :--- | solution.

- Haematoxylin solution stains DNA a blue colour.
- Iodine solution stains starch a blue-black colour.

The scientist used haematoxylin solution and not iodine solution to stain the lung tissue.

Suggest why.
Lung tissue should not contain any starch as its from an animal. Mares the nucleus visible that contains the ONA.
\qquad
\qquad
\qquad

Question 5 continues on the next page

| 0 | 5 |
| :--- | :--- | 4

Scientists investigated the link between the lung disease asthma and three risk factors. They studied a large number of people. They recorded if the people had asthma and if they:

- were obese
- burned wood indoors as a fuel
- lived in a house with a cat or dog.

The scientists used a statistical test to calculate the probability of the link between asthma and each risk factor being due to chance.

Table 2 shows their results.
Table 2

Risk Factor	Probability (P value)
Obese	<0.001
Burned wood indoors	$=0.06$
Lived with a cat or dog	<0.05

A student who looked at these results concluded that all three risk factors are linked with asthma. Evaluate this conclusion.
[3 marks]
Burned wood indoors is greater than 0.05 So not significantly.
Obesity is highly significant, strongly suggesting its line to asthma
\qquad there is a less tran 5% chance the results are due to chancre.
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	1

Do not include DNA helicase or splicing in your answer.
Free nucleotides pair with the template strand exposed base pairs, as they are complementing to each.

RNA polymerase forms phosphoociester bonds
\qquad
\qquad
\qquad
\qquad

0	6	2

nucleotide sequence coding for the primary structure of a protein in triplet codons.

Question 6 continues on the next page

Table 3 shows mRNA codons for some amino acids.
Table 3

Serine	Proline	Glycine	Threonine	Alanine
UCU	CCU	GGA	ACU	GCA
OC	GCA	GGG	ACC	GCG

| 0 | 6 | 3 | Figure 6 shows the DNA template nucleotide base sequence that determines the |
| :--- | :--- | :--- | :--- | sequence of four amino acids.

Figure 6
AGGCGT COT GGA

Use information from Table 3 and Figure 6 to give the amino acid sequence determined by this sequence of nucleotides.

Serine, Alanine, Glycine, Proline.

0	6	4
4		

Serine Glycine Glycine Proline

A student concluded that the mutation involved the addition of one nucleotide within the sequence shown in Figure 6. Does information in this question support the student's conclusion? Give reasons for your answer.
\qquad This is a substitution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	7.	$\mathbf{1}$

Bacteria replicate by binary fission. First they replicate the genticic uffornation, bo rephicatche the single circular DNA then the plasmids. Lastly the Cegtoptasm is divided to form 2 identical daregther cells.
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page

The cell growth rate of the bacterium Bacillus subtilis is proportional to its mass immediately after binary fission.

Figure 7 shows this relationship.
Figure 7

0	$\mathbf{7}$	$\mathbf{2}$ The mass of the bacterial cells was measured in femtograms (fg).

$1 \mathrm{fg}($ femtogram $)=1 \times 10^{-15} \mathrm{~g}$
Place a tick (\checkmark) in the box next to the number that is equal to 680 fg
0.0000000000068 g

$6.8 \times 10^{-13} \mathrm{~g}$

$6.8 \times 10^{-15} \mathrm{~g}$ \square
$6.8 \times 10^{-17} \mathrm{~g}$

A scientist determined the growth rate of a B. subtilis cell by measuring its mass for 5 minutes.

In those 5 minutes, the cell's mass increased by 90 fg

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Use this information and Figure $\mathbf{7}$ to determine the mass of this cell immediately after |
| :--- | :--- | :--- | :--- | binary fission.

Show your working.

$$
\begin{aligned}
& 5 \min =300 \mathrm{~s} \\
& \frac{90 \mathrm{fg}}{300 \mathrm{~s}}=0.3 \mathrm{fg} \mathrm{~s}^{-1}
\end{aligned}
$$

Drawn on graph
Answer \qquad 660 fg

| 0 | 7 |
| :--- | :--- | \square Suggest and explain how two environmental variables could be changed to increase the growth rate of these cells.

Suggestion 1 Increased temperature
\qquad
\qquad
Explanation Leads to higher rake of enzyme activity as particles have more energise, so more enzyme subshate complexes form.

Suggestion 2 Increased Concentration of glucose.
\qquad
\qquad
Explanation More available for respiration, so more
\qquad energs cam be released and used in processes

| 0 | 8 |
| :--- | :--- | A scientist investigated birth mass in a population of babies. She determined the

Table 4

Birth mass $\boldsymbol{b} / \mathbf{k g}$	Range of mass $/ \mathbf{k g}$	Frequency density
$0.0<b<2.0$	2.0	5000
$2.0<b \leqslant 2.5$	0.5	20000
$2.5<b<3.0$	0.5	90000
$3.0<b \leqslant 3.5$	0.5	260000
$3.5<b \leqslant 4.5$	1.0	200000
$4.5<b \leqslant 5.5$	1.0	20000

Frequency density is calculated using this equation

$$
\text { Frequency density }=\frac{\text { number of babies }}{\text { range of mass }}
$$

| 0 | 8 | 1 | Draw, on Figure 8, a suitable chart to show the distribution of birth mass for this |
| :--- | :--- | :--- | :--- | population of babies.

Birth mass / kg

0	8	2	Babies with birth mass less than 2.5 kg are classified as low birth mass.

Use information in Table 4 and the equation to calculate the number of babies born with low birth mass in this population.

Show your working.
number of babies $=$ freq. density x range of mass

$$
\begin{aligned}
=(5000 \times 2)+(10000 \times 0.5) & =10000+10000 \\
& =20000
\end{aligned}
$$

$$
=20000
$$

Answer \qquad 20000

The scientist also measured the relationship between birth mass and babies surviving less than 4 weeks. She determined if the mothers of these babies smoked cigarettes during pregnancy. Her results are shown in Figure 9.

Figure 9

Key
----- Mothers who smoked cigarettes during pregnancy
_- Mothers who did not smoke cigarettes during pregnancy

| 0 | $\mathbf{8}$ | $\mathbf{3}$ State three conclusions that can be drawn from the data in Figure 9. |
| :--- | :--- | :--- | :--- |

1 Survival increases as birth mass increases for
both groups

2 Survival decreases if mother smoked.
\qquad
\qquad
3 The effect of smoking on survival is the same at all birth masses. Reduces survival by the
same amount at any mars.
\square Channel proteins called aquaporins enable water to be transported across membranes. Aquaporins are produced in cells when genes coding for the proteins are expressed. One aquaporin gene is called PIP1b. The expression of PIP1b in tobacco plant cells produces an aquaporin located in their cell membranes.

Scientists have produced genetically modified tobacco plants. The scientists inserted a gene from a different species into the DNA of tobacco plant cells. This gene causes an increase in the rate of transcription of the PIP1b gene.

The scientists found that the stomatal density of leaves from tobacco plants with the inserted gene was greater than that of unmodified control plants.
In a different investigation, scientists measured the movement of potassium ions and water molecules through cell-surface membranes and vacuole membranes. They found 6 potassium ions moved for every 150 water molecules across vacuole membranes. They found 3 potassium ions moved for every 1500 water molecules across cell-surface membranes.

Use information from the passage and your own understanding to answer the questions.

| 0 | 9 |
| :--- | :--- | \square Explain how the proteome of a cell from a genetically modified tobacco plant (lines 5-7) differs from that of a cell from an unmodified control tobacco plant.

It has all the same proteing produced, but has one extra protein ar gene inserted from another
\qquad 1 more protein.
\qquad
\qquad
\square Explain how an increase in the rate of transcription of the PIP1b gene (lines 6-7) will affect the permeability of tobacco plant cell membranes to water.

The expressed gene loll lead to the increased production of aquaporins. This increases the
\qquad
\qquad
\qquad
\qquad
 density on the growth of tobacco plant leaves (lines 8-9).

Advantage More stomata cellows more efficient gas uptake of CO_{2} used in photosynthesis.
So fatter photosynthesis produces more sugars, so plants can grow faster.

Disadvantage Water is lost through the stomata
in transpiration, Water is needed in photosynthesis so large mount of waterless slows down and limits the rate of photosynthesis. Sa less growth will take place.

| 0 | 9 | 4 |
| :--- | :--- | :--- | molecules across a vacuole membrane than across a cell-surface membrane (lines 10-14)? Show your working.

Vacuole membrane cell surface membrane

$$
\div 6\binom{6-150}{1-25} \div 6 \quad \div 3\binom{3-1500}{1-500} \div 3
$$

$$
\frac{500}{25}=20 \Rightarrow \times 20
$$

Answer \qquad $\times 20$

END OF QUESTIONS

