Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level

PHYSICS

Paper 3
 Section B Astrophysics

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
TOTAL	

- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section B

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | (HR) diagram.

Figure 1

| 0 | 1 | 1 |
| :--- | :--- | :--- | State the evolutionary stage of the star at each of the points $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z}. w Protostar

x main sequence star
Y Red giant
z white dwarf.

Theta Carinae is a star with a radius five times that of the Sun. It has a surface temperature of 31000 K .

0	1	2
Annotate Figure		
1		

An astronomer suggests that an Earth-sized planet orbits Theta Carinae.

The transit method measures how much light is blocked out by the planet. This star is very large and so very little light will be blocked out by an Earth-sized planet.
\qquad

| 0 | 1.4 | The astronomer suggests that the Earth-sized planet receives a similar amount of |
| :--- | :--- | :--- | power from Theta Carinas as the Earth does from the Sun.

The average power output of the Sun is $3.8 \times 10^{26} \mathrm{~W}$.
Determine the orbital radius of the Earth-sized planet orbiting Theta Carinae.
[5 marks]

$$
\begin{aligned}
P & =\sigma A T^{4} \\
& =5.67 \times 10^{-8} \times 4 \pi R^{2} \times 31000^{4} \\
& =8.0 \times 10^{30} \mathrm{~W}
\end{aligned}
$$

$$
\frac{P_{\text {Theta }}}{P_{\text {sun }}}=\frac{8.0 \times 10^{30}}{3.8 \times 10^{26}}=21.1 \times 10^{3}
$$

\Rightarrow planet must be $\sqrt{21.1 \times 10^{3}}$ times further away.

$$
R=1.5 \times 10^{11} \times \sqrt{21.1 \times 10^{31}}=2.2 \times 10^{13} \mathrm{~m}
$$

\qquad m

| 0 | 2 | 1 |
| :--- | :--- | :--- | Which graph shows the light curve for a typical type la supernova?

Tick (\checkmark) one box.

C

A \square
B \square
C \square
D

| 0 | 2 | 2 |
| :--- | :--- | :--- | The Andromeda galaxy is approximately $7.7 \times 10^{5} \mathrm{pc}$ from Earth.

Deduce whether a type la supernova which occurred in Andromeda can be observed from Earth with the naked eye.

$$
\begin{aligned}
m & =5 \log \left(\frac{d}{10}\right)-M \\
m & =5 \log \left(\frac{7.7 \times 10^{5}}{10}\right)-19.3=5.1
\end{aligned}
$$

[3 marks]
a m is less than the Hipparcos limit
\qquad
\qquad naked eye.
\qquad

Turn over for the next question

0	3	$M i a p l a c i d u s ~ a n d ~ A v i o r ~ a r e ~ t w o ~ s t a r s ~ i n ~ t h e ~ c o n s t e l l a t i o n ~ C a r i n a . ~$

Miaplacidus is a class A star.
Avior is a class K star.
Figure 2 shows how the intensity of radiation arriving at the Earth varies with wavelength for one of these stars. Only the important features of the variation are shown.

Figure 2

Deduce, with reference to Figure 2, the identity of the star.
In your answer you should:

- explain the overall shape of the graph
- describe the processes in the star that lead to the decreases in intensity
- state the identity of the star.

The overall cape shows a black body spectrum where $\lambda_{\text {max }}$ is inversely proportional to the temperature. The dips in the spectrum are due to absorption of particular wavelengths by gasses in the cuter layers of the star.

This star is miaplacidus (class A)
\qquad
of the temperature is clall A.
\qquad

| 0 | 4 |
| :--- | :--- | :--- | emitting radiation several thousand years ago.

0	4	1

Quasars are formed around black holes.
The black hole at the centre of IC2497 no longer has matter falling into it.
\qquad
\qquad

0	4	2	IC2497 has a red shift of 0.0516

Determine the distance from the Earth to IC2497.
Give an appropriate unit for your answer.

$$
\text { distance }=
$$

\qquad
unit =
\qquad

$$
\begin{aligned}
& z=v \quad \text { so } v=z C=0.0516 \times 3.0 \times 10^{8} \quad \text { [4 marks] } \\
& =1.55 \times 10^{7} \mathrm{~ms}^{-1} \\
& =1.55 \times 10^{4} \mathrm{kms}^{-1} \\
& r=H d \text { so } d=\frac{v}{H}=\frac{1.55 \times 10^{4}}{65} \\
& =238 \mathrm{MPC} \text {. }
\end{aligned}
$$

0	5	1

The Rayleigh criterion identifies the minimum subtended angle between 2 objects whose (mage) can be resolved. This minimum angle is when the central maximum of one object coincides with the first minimum of the second object.
\qquad

| 0 | 5 | 2 |
| :--- | :--- | :--- | A telescope uses wavelengths in the range 90 nm to 120 nm .

Explain why this telescope must be located in space.
Go on to discuss one advantage that this telescope has compared to a telescope with the same aperture that uses visible light.
[3 marks]
The telescope is detecting $u-V$ wavelengths which are snorter than visible light. The $U-V$ is absorbed by the ozone and so the telescope must be in space. $U-V$ light gives a better resolution because the shorter wavelength diffract less.
\qquad
\qquad
\qquad

Question 5 continues on the next page

0	5	3

Table 1

Telescope	Diameter /m	Dish shape
Arecibo	305	spherical
Lovell	76	parabolic

Each telescope detects radio waves with a wavelength of 21 cm .
Compare the performances of the telescopes in Table 1 when both are used to observe the same faint radio objects.
collecting power α diameter.

$$
\Rightarrow \frac{\text { Arecibo }}{\text { lovell }}=\frac{305^{2}}{76^{2}}=16.1
$$

Resolving power

$$
\begin{aligned}
& \theta=\frac{\lambda}{D} \Rightarrow \alpha \frac{1}{D} \\
& \frac{\text { Arecibo }}{\text { lovell }}=\frac{76}{305}=0.25 .
\end{aligned}
$$

Arecibo is B create a brighter image but Lovell will likely have better detail berawe the parabolic shape will remove spherical aberration.
\qquad
\qquad
\qquad

