Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Sumame
Forename(s)
Candidate signature
I declare this is my own work.

A-level PHYSICS

Paper 3

Section A

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section A

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | Figure 1 shows apparatus used to investigate the inverse-square law for gamma radiation.

Figure 1

A sealed source that emits gamma radiation is held in a socket attached to clamp B. The vertical distance between the open end of the source and the bench is 138 mm . A radiation detector, positioned vertically above the source, is attached to clamp T.

A student is told not to move the stands closer together.

0	1	1
1	Describe a procedure for the student to find the value of d, the vertical distance	

In your answer, annotate Figure 1 to show how a set-square can be used in this procedure.

the detector using a set square then
Subtract 138 mm

Question 1 continues on the next page
\qquad 1. 2 Before the source was brought into the room, a background count C_{b} was recorded.

Do not write

$$
C_{\mathrm{b}}=630 \text { counts in } 15 \text { minutes }
$$

With the source and detector in the positions shown in Figure 1, $d=530 \mathrm{~mm}$. Separate counts C_{1}, C_{2} and C_{3} are recorded.

$$
\begin{aligned}
& C_{1}=90 \text { counts in } 100 \mathrm{~s} \\
& C_{2}=117 \text { counts in } 100 \mathrm{~s} \\
& C_{3}=102 \text { counts in } 100 \mathrm{~s}
\end{aligned}
$$

R_{C} is the mean count rate corrected for background radiation.
Show that when $d=530 \mathrm{~mm}, R_{\mathrm{C}}$ is about $0.3 \mathrm{~s}^{-1}$.

$$
\begin{aligned}
C_{b} & =\frac{630}{15 \times 60}=0.7 \text { counts } s^{-1} \\
C_{a v} & =\frac{90+117+102}{3} \times \frac{1}{100}=1.03 \text { counts } s^{-1} \\
R_{c} & =C_{a v}-C_{b} \\
& =1.03-0.7=0.33 \mathrm{~s}^{-1}
\end{aligned}
$$

| 0 | 1 | 3 |
| :--- | :--- | :--- | The apparatus is adjusted so that $d=380 \mathrm{~mm}$.

Counts are made that show $R_{\mathrm{C}}=0.76 \mathrm{~s}^{-1}$.

The student predicts that:

$$
R_{\mathrm{C}}=\frac{k}{d^{2}}
$$

where k is a constant.
Explain whether the values of R_{C} in Questions 01.2 and 01.3 support the student's prediction.
[2 marks]

$$
\begin{aligned}
& \text { Re for } d=530 \mathrm{~mm} \\
& k=R_{c} d^{2}=0.33 \times(0.53)^{2}=0.093
\end{aligned}
$$

$$
\text { for } d=380 \mathrm{~mm}
$$

$$
\begin{aligned}
& \text { for } d=380 \mathrm{~mm} \\
& k=0.76 \times(0.38)^{2}=0.110
\end{aligned}
$$

$$
\% \text { difference }=\frac{0.110-0.093}{0.0093} \times 100=18 \%
$$

The large percentage difference suggests that the prediction is not correct.

0	1	4

[2 marks]
adjust the position of the detector using the clamp to maximise the distance between the expenmenter and the source
\qquad
\qquad

Figure 2

0	1.	5
Determine Δd.		

$$
\begin{aligned}
\Delta d & =\left(10^{2.36}-10^{2.26}\right) \div 1 \\
& =47.1 \mathrm{~mm} .
\end{aligned}
$$

$$
\Delta d=47.1
$$

0	1	6	Explain how the student could confirm whether Figure 2 supports the prediction:

$$
R_{\mathrm{C}}=\frac{k}{d^{2}}
$$

No calculation is required.
$\log R_{c}=-2 \log d+\log k$ so they should draw a line of best fit and measure the approximately gradient. If the gradient is nequal to
-2 then the prediction is correct
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

When a gamma photon is detected by the detector, another photon cannot be detected for a time t_{d} called the dead time.

It can be shown that:

$$
t_{\mathrm{d}}=\frac{R_{2}-R_{1}}{R_{1} \times R_{2}}
$$

where R_{1} is the measured count rate R_{2} is the count rate when R_{1} is corrected for dead time error.

| 0 | 1 | 7 |
| :--- | :--- | :--- | The distance between the source and the detector is adjusted so that d is very small and R_{I} is $100 \mathrm{~s}^{-1}$.

On average, two of the gamma photons that enter the detector every second are not detected.

Calculate t_{d} for this detector.

$$
\begin{aligned}
& R_{1}=100 \mathrm{~s} \\
& R_{2}=102 \\
& t_{d}=\frac{102-100}{100 \times 102}=1.96 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

$$
t_{\mathrm{d}}=1.96 \times 10^{-4} \mathrm{~s}
$$

| 0 | 1 |
| :--- | :--- | \square A student says that if 100 gamma photons enter a detector in one second and t_{d} is 0.01 s , all the photons should be detected.

Explain, with reference to the nature of radioactive decay, why this idea is not correct.
\qquad photon may arrive at a detector within a 0.Ols interval.
\qquad
\qquad
\qquad

| 0 | 2 | A light-emitting diode (LED) emits light over a narrow range of wavelengths. |
| :--- | :--- | :--- | These wavelengths are distributed about a peak wavelength λ_{p}.

Two LEDs L_{G} and L_{R} are adjusted to give the same maximum light intensity. L_{G} emits green light and L_{R} emits red light.

Figure 3 shows how the light output of the LEDs varies with the wavelength λ.

Figure 3

Question 2 continues on the next page

0	$\mathbf{2}$	$\mathbf{1}$ Light from L_{R} is incident normally on a plane diffraction grating.

The fifth-order maximum for light of wavelength λ_{p} occurs at a diffraction angle of 76.3°.

Determine N, the number of lines per metre on the grating.

$$
\begin{aligned}
& \lambda_{p}=635 \mathrm{~nm} \text { from Figure } 3 . \\
& n \lambda=d \sin \theta \\
& d=\frac{n \lambda}{\sin \theta}=\frac{5 \times 635 \times 10^{-9}}{\sin 76.3}=3.27 \times 10^{-6} \mathrm{~m} \\
& N=\frac{1}{3.27 \times 10^{-6}}=3.06 \times 10^{5}
\end{aligned}
$$

Figure 4

When the linear part of the characteristic is extrapolated, the point at which it meets the horizontal axis gives the activation voltage V_{A} for the LED.
V_{A} for L_{G} is 2.00 V .
Determine, using Figure 4, V_{A} for L_{R}.
V_{A} for $L_{R}=1.91$ V

0	2	4

where $h=$ the Planck constant.
Deduce a value for the Planck constant based on the data given about the LEDs.

$$
\begin{aligned}
h_{r} & =\frac{e V_{A} \lambda_{p}}{C} \\
& =\frac{1.6 \times 10^{-19} \times 1.91 \times 635 \times 10^{-9}}{3.0 \times 10^{8}} \\
& =\frac{6.47 \times 10^{-34}}{3.0 \times 10^{8}} \\
h_{G} & =\frac{1.6 \times 10^{-19} \times 1.93 \times 553 \times 10^{-9}}{3} \\
& =5.70 \times 10^{-34}
\end{aligned}
$$

$$
\text { average }=6.1 \times 10^{-34}
$$

$$
h=\underline{6.1 \times 10^{-34}} \mathrm{Js}
$$

| 0 | 2 | 5 |
| :--- | :--- | :--- | Figure 5 shows a circuit with L_{R} connected to a resistor of resistance R.

Figure 5

The power supply has emf 6.10 V and negligible internal resistance. The current in L_{R} must not exceed 21.0 mA .

Deduce the minimum value of R.
for $L=21 \mathrm{~mA}, V=2.1 \mathrm{~V}$ (from Figure 4)

$$
R=\frac{6.1-2.1}{21 \times 10^{-3}}=190 \Omega
$$

\qquad

| 0 | 3 | An analogue voltmeter has a resistance that is much less than that of a modern digital |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | voltmeter.

Analogue meters can be damaged if the full-scale reading is exceeded.
Figure 6 shows a dual-range analogue voltmeter with a zero error.
Figure 6

| 0 | 3 | 1 |
| :--- | :--- | :--- | The voltmeter is set to the more sensitive range and then used in a circuit.

What is the potential difference (pd) between the terminals of the voltmeter when a full-scale reading is indicated?

Tick (\checkmark) one box.
2.7 V

3.3 V

13.5 V

16.5 V \square

0	3	2

move position until the needle is aligned with its reflection in the mirror before raking a reading. This reduces parallax error.

Question 3 continues on the next page

A student corrects the zero error on the meter and then assembles the circuit shown in Figure 7.
The capacitance of the capacitor \mathbf{C} is not known.
Figure 7
flying lead

The output pd of the power supply is set to zero.
The student connects the flying lead to socket \mathbf{X} and adjusts the output pd until the voltmeter reading is full scale (15 V).
She disconnects the flying lead from socket \mathbf{X} so that \mathbf{C} discharges through the voltmeter.

She measures the time $T_{1 / 2}$ for the voltmeter reading V to fall from 10 V to 5 V .
She repeats this process several times.
Table 1 shows the student's results, none of which is anomalous.
Table 1

$\boldsymbol{T}_{1 / 2} / \mathrm{s}$	12.00	11.94	12.06	12.04	12.16

0	3	3	Determine the percentage uncertainty in $T / 1 /$.

Do not write

$$
\text { percentage uncertainty }=0.91 \quad \%
$$

0	3	4

$$
\begin{aligned}
\tau & =\frac{T_{1} / 2}{\ln 2} \\
& =\frac{12.04}{\ln 2} \\
& =17.45
\end{aligned}
$$

Question 3 continues on the next page

| 0 | 3 | 5 |
| :--- | :--- | :--- | The student thinks that the time constant of the circuit in Figure $\mathbf{7}$ is directly proportional to the range of the meter.

To test her theory, she repeats the experiment with the voltmeter set to the 3 V range. She expects $T 1 / 2$ to be about 2.5 s .

Explain:

- what the student should do, before connecting capacitor \mathbf{C} to the 0 V and 3 V sockets, to avoid exceeding the full-scale reading on the voltmeter
- how she should develop her procedure to get an accurate result for the time constant
- how she should use her result to check whether her theory is correct.

Discharge C by connecting flying lead to $Y ~$
and reduce the output PD to $\leq 3 v x$. To improve the procedure, increase the timing interval and take repeated reading then calculate a mean average. Correct for any zero error on the voltmeter for each reading. The theory will be correct if the time constant is approximately 20% the initial value.
\qquad

The student wants to find the resistance of the voltmeter when it is set to the 15 V range.
She replaces C with an $820 \mu \mathrm{~F}$ capacitor and charges it to 15 V .
She discharges the capacitor through the voltmeter, starting a stopwatch when V is 14 V .
She records the stopwatch reading t at other values of V as the capacitor discharges.
Table 2 shows her results.
Table 2

$\boldsymbol{V} / \mathbf{V}$	14	11	8	6	4	3	2
$\boldsymbol{t} / \mathrm{s}$	0.0	3.1	7.2	11.0	16.2	19.9	25.2

| 0 | 3 | 6 | Suggest two reasons why the student selected the values of V shown in Table 2. |
| :--- | :--- | :--- | :--- | Explain each of your answers.

$1 . v$ data over a wide range. to test if the relationship changes in different ranger of V.
\qquad
\qquad
\qquad
lower
2 decreasing intervals between values of V because timings are shorter for lower VS and hence less accurate
\qquad
\qquad
\qquad

Question 3 continues on the next page

Figure 8 shows a graph of the experimental data.
Figure 8

\qquad

0	3	7

$$
\begin{aligned}
& \text { gradient }=\frac{2.65^{-0.5}}{27.5}=14820.0782 \\
& \begin{aligned}
\text { gradient } & =\left|\frac{-1}{R \times C}\right| \\
R & =\frac{1}{\operatorname{grad} \times C}=\frac{1}{0782 \times 420 \times 10^{-6}} \\
& =15.6 \times 10^{3} \Omega
\end{aligned}
\end{aligned}
$$

varlet throe
fondle

| 0 | 3 | 8 |
| :--- | :--- | :--- | Determine the current in the voltmeter at $t=10 \mathrm{~s}$.

for $t=10 \mathrm{~s}, \ln \left(\frac{V_{10}}{V}\right)=1.85$

$$
\begin{aligned}
& V_{10}=V_{0} e^{\frac{-10}{C R}} \Rightarrow V_{10}=6.37 \\
& 1=\frac{V}{R}=\frac{6.37}{15.6 \times 10^{3}}=4.1 \times 10^{-4} \mathrm{~A}
\end{aligned}
$$

\qquad

END OF QUESTIONS

