

Please write clearly in	
Centre number	Candidate number
Surname	
Surname Forename(s) Candidate signature	

A-level PHYSICS

Paper 3 Section B

Turning points in physics

Friday 5 June 2020

Afternoon

Materials

For this paper you must have:

- · a pencil and a ruler
- · a scientific calculator
- · a Data and Formulae Booklet.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- · Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

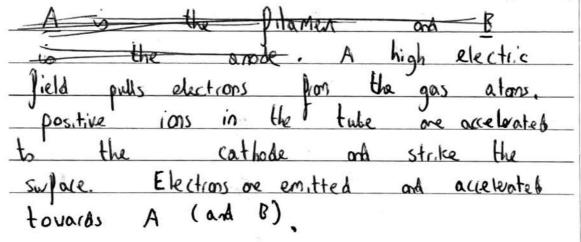
For Examiner's Use					
Question	Mark				
1					
2					
3					
4	100				
TOTAL	٥				

Section B

Answer all questions in this section.

0 1 Figure 1 shows a diagram of a discharge tube used by JJ Thomson to investigate cathode rays.

Figure 1



The direction XY is horizontal and at right angles to the axis of the tube.

0 1. 1 When correct connections are made to a high-voltage power supply, a cathode ray is produced. The cathode ray hits the centre of the fluorescent screen.

Describe how a cathode ray is produced in the discharge tube in Figure 1.

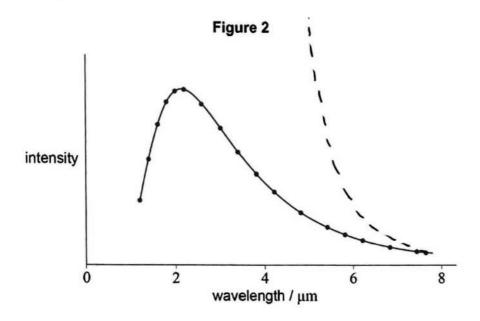
[2 marks]

Do not w	rrite
outside	the
hox	

0 1.2	P and Q are metal plates that can be attached to a second power supply.
	In an experiment, a potential difference (pd) is applied across P and Q so that P is positively charged and Q is negatively charged. This deflects the cathode ray.
	Then a magnetic field is applied between the plates so that the cathode ray follows its original path to the centre of the screen.
	What is the direction of the magnetic field? Tick (✓) one box.
	[1 mark]
	from P to Q
	from Q to P
	from X to Y
	from Y to X
	Question 1 continues on the next page

0 3

0 1.3	Changes are made to the apparatus so that the particles in the cathode ray travel with a greater speed as they pass between plates P and Q .	outside box
	Explain how the cathode ray is restored to its original path by adjusting:	
	 only the electric field strength between P and Q only the magnetic flux density. [3 marks] 	
	electric field strength only the thee path is	
	Straight, electric lorce = magnetic lorce.	
	$E_q = B_q V$ rearranging to give $V = E$ \overline{B} .	
	To restore to the original path, increase.	elect is
	magnetic flux density only	
	or decrease magnetic flux density because	
	this will increase V the sq vebcity.	
0 1.4	Using the apparatus in Figure 1 , Thomson determined the specific charge of the particles in the cathode rays. Thomson compared this result with the specific charge of the hydrogen ion.	
	Discuss the significance of Thomson's results for the particles in cathode rays, when compared with the specific charge of the hydrogen ion. [2 marks]	
	Magnitude of their specific charge is much greater than the specific	
	Charge of hydrogen, the cathode ray	
	porticles mass is much small	
	than the hydrogen and therefore	
· orb	: they are smaller.	
	9	



0 2

At the end of the 19th century new information was obtained about black-body radiation and the photoelectric effect. This information challenged classical physics theories.

In 1895, Wien and Lummer carried out experiments to measure black-body radiation accurately.

Figure 2 shows a typical black-body radiation curve of the type obtained by Wien and Lummer.

0 2.1 State what is meant by black-body radiation.

[2 marks]

It	ò	election	- magne	tic (o	diation	that
hos	۵	Spectrum	87	Bepicted	in the	
diagra	m,	With a	peak	that	depends	
ل م	١	tempuat un	۹		1	

Do not write
outside the
box

0 2.2	Describe how the predictions of classical theory compare with Wien and Lummer's experimental results.
	Annotate Figure 2 as part of your answer. [2 marks]
	Classical theorey said that
	instead of a peak intensity, there is
	an intensity increase that is injusty
	at short have lengths. Classical Heory
	did agree though that there would
	be similar intensities at long varelengths
0 2.3	In 1900 Max Planck suggested a solution to the problems of the classical theory.
	Outline the main aspects of his suggestion. [2 marks]
	He Suggested that electromagnetic
	radiation is emitted in quanta and
	that the energy of a quantum
	is related to a Single frequency
	i.e E=hl
	1.0

Question 2 continues on the next page

0 2.4 Planck's suggestion was developed by Albert Einstein to explain the results of photoelectric effect experiments.

> Discuss Einstein's explanation of photoelectricity and its significance in terms of the nature of electromagnetic radiation.

In your answer you should

- describe two relevant observations made in photoelectric experiments
- · explain the failure of classical physics to account for these observations
- · include the main aspects of Einstein's theory and how he explained the observations.

[6 marks]

I	photoel	ectric	exper!	ments	one	
observe	ation	Was	that	there	Ġ	Mo
light	lectric	below	the	. J-	thres	heold
Prequer	Icy.	Another	065	evation	Va	s that
the	J	Aum	photoe	lectric	en.	nission
Ś	instant	aneos	and	occus	۵۵	5000
as	1. ght	·	incia	ent A	on t	he
metal) 20	Mace		**		
		r				
Ø (lassical	P	y sics	Va	s pa	oblematic
because	د ن	t '	J 2t	ated	that	He
intersity	Shaud	<u>the</u>	Vave	eneg	, ;)
Spread	J	au	the	sulace	<u> </u>	Meaning
it.	Shauld	tak	٤	longe	201	the
elect	r(m)	to a	(((un ula	te	eran	enegy
t	tions be em	ttea.	Mean	g U	assica	Work
theory	Saja	tha	,	it Va		ot
instanto	veos.	(lassi	cal	physics	al	so said
that	light	6	ОЩ	1 Jan	quey	
	J		J			

Shadd	(ax	emiss.o	n vhi	ih is	incouled
as it	Must		abore		
Prequery.					
11)					
Einstein	Could	ex	plan H	ese 0	sevaions.
He S	aid t	hat	light	Ś	made
wp of p	lotans,	onb	that J	ploto ele	ut (ons
are J.	emitted	in	the	photol	lectai
yect	be coura	Ove	photon	intua	cts with
U one	electro	ν,	He sto	ated	that
lor a	electro	on e/	nitted,	on A	tle
remain	ng env	94 6	He	photon	be comes
the	motinum		kiretic	eres	7, 9
_ the	photo	election.	A	br.'g	hte
Saire	Means	more	phot o	ns o	nd
more	photoelect	ions.			
		-			
	Turn over	for the next	question		

Turn over ▶

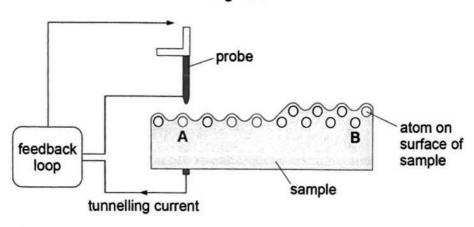
12

	-	_										
() 3	Ш	1	The scanning	tunnelling	microscon	e (STM	uses a pr	rocess cal	lled a	uantum t	unnellina.
		- 19	11.77.5	THE SCATTINI	turnichnig	microscop	C (C : 101	, accoura pi	00000 00			

Explain what is meant by quantum tunnelling of an electron in an STM. You may include a diagram as part of your answer.

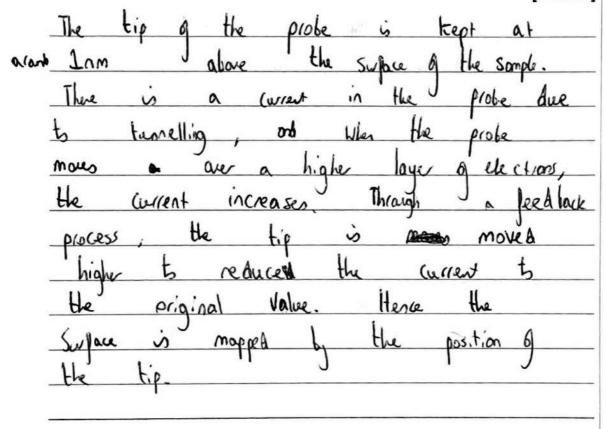
[2 marks]

The	elections	don't	hove	enough
energy	t	Quelame	the	potential
barrier	. Ho	weve,	a \$/0	action of the
electro	الرب ده	Mare	from	sample to tip
64	quentum	tuneling.	J	
J	T	.,		


Question 3 continues on the next page

0 3.2 An STM is used to map the positions of the atoms between points A and B on the surface of a sample.

Figure 3 shows some of the features of the operation of an STM.


Figure 3

The STM in Figure 3 is in constant-current mode.

Describe how the STM creates a map of the positions of one row of atoms on the surface of the sample from A to B.

[3 marks]

8

0 3.3

The smallest size of objects that the STM can resolve is similar to the de Broglie wavelength of the tunnelling electrons.

Deduce whether electrons with kinetic energies less than $1.5~{\rm eV}$ are suitable to map the surface in **Figure 3**.

[3 marks]

$$\lambda = h = \frac{6.63 \times 10^{-34}}{1.11 \times 10^{-3}} = 1.0 \times 10^{-9} \text{ m}$$

h Shauld

They are not suitable because than 1 nm

Turn over for the next question

 $\boxed{ \textbf{0} \hspace{0.1cm} \textbf{4} }. \boxed{ \textbf{1} }$ A muon travels at a speed of 0.95c relative to an observer.

The muon travels a distance of 2.5 \times $10^3\,m$ between two points in the frame of reference of the observer.

Calculate the distance between these two points in the frame of reference of the muon.

[2 marks]

$$1 = 1500 \times \sqrt{1 - 0.95^2}$$

$$= 780.6 \text{ m}$$

distance = $\frac{781}{m}$

0 4.2 Measurements of muons created by cosmic rays can be used to demonstrate relativistic time dilation.

State the measurements made and the observation that provides evidence for relativistic time dilation.

[2 marks]

* Measure	Λο.	Muans	pass	, no
through a	Betech	of per		
uppe at	mo sphere	on θ	00	the nound
Measirements	Show	that lo	(less	Muons decan
than expecte	d ntl	etime tok	en Br	muons to
travel from	the w	oper atmos	shere to	the ground
travel floor	serves	Pione	of referen	() Jan,

Do not write outside the box

0 4.3	As the muons travel through the atmosphere, their speeds are reduced by interaction with the particles in the air.
	Discuss, with reference to relativity, the effect that this reduction of speed has on the rate of detection of the muons on the surface of the Earth.
	Law velocity Means
	that the muons take longer to travel
	to the grand is either from of reference.
	Thus the time dilation is yess
	in Earths lione of reference. So more
	muons decay before reaching the ground
	so the rate of detection is reduced.
	J
	у

END OF QUESTIONS

