AQA

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature

> I declare this is my own work.

A-level PHYSICS

Paper 3

Section B Astrophysics

Friday 5 June 2020

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Afternoon

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- A Data and Formue Boklis provid as a lose inse

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

Section B
Answer all questions in this section.

0	1	1	Draw a ray diagram for a Cassegrain telescope.

Your diagram should show the paths of two rays up to the eyepiece lens. The rays should initially be parallel to the principal axis.

0
1 2

A spacecraft passes Pluto at a distance of 12500 km . The telescope on board has an aperture of diameter 0.21 m and operates at a wavelength of 450 nm .

Discuss whether this telescope is suitable for studying a crater with a diameter of approximately 1 km on Pluto.

$$
\begin{aligned}
& \text { Resolution }=\frac{450 \times 10^{-9}}{0.21}=2.14 \times 10^{-1} \quad \text { radians } \\
& \text { The Smallest detail }=2.14 \times 10^{-6} \times 12.5 \times 10^{6}=27 \mathrm{~m}
\end{aligned}
$$

\qquad
\qquad

0	1	3

Compare the collecting power of the Hubble telescope with the telescope on the spacecraft in Question 01.2.
power $\&$ area D Divide b get
prose florio

$$
\frac{2.4^{2}}{0.21^{2}}=130
$$

\therefore The hubble hos a much lave
collecting pour.

| 0 | 1 | 4 |
| :--- | :--- | :--- | An astrophysicist had to decide whether to use a reflecting telescope or a refracting telescope on the spacecraft in Question 01.2.

Discuss which type of telescope to use.
A refracting telescope con syfs spherical aberrations which fact the image. Reflecting or lighter the and hove milos. The millais men n these is no chromatic aleration. Havever they con have reducel inorg brightress Que ts the secondary miller blocking sore light. The reflecting telescope would still be the better type ts use.

| 0 | 2 | Table 1 summarises some information about four stars in the constellation
 Cassiopeia. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Table 1
 Name Colour Apparent magnitude
 Caph white 2.3 55
 Ruchbah blue/white 2.7 99
 Schedar orange 2.2 228
 Tsih blue 2.2 610 | |

| 0 | 2 | 1 |
| :--- | :--- | :--- | Which star has the highest surface temperature?

Tick (\checkmark) one box.

Caph

Ruchbah \square

Schedar

Tsih

| 0 | 2 | 2 |
| :--- | :--- | :--- | wavelength. The effect of absorption by the Earth's atmosphere is not shown.

Figure 1

Discuss what information can be found from Figure 1 about the temperature and colour of these stars.
Support your answer with suitable calculations.

$$
T \frac{w}{\lambda}
$$

$$
\text { Caph } T=\frac{2.90 \times 10^{-3}}{410 \times 10^{-4}}=7073 \mathrm{~K}
$$

$$
\text { Schesor } T=\frac{2.90 \times 10^{-3}}{\frac{450 \times 10^{-9}}{660}}=4393 \mathrm{k}
$$

\qquad graph is find the temperature.
The lempeibes of caph an sclesor
are 7073 k an 439 k k respectively.
We can see that schedar
\qquad
\qquad
Question 2 continues on the next page

0	2	3	3

Caph

0	2	4

$$
\begin{aligned}
& m-M=5 \log \frac{d}{10} \\
& M=M-5 \log \frac{d}{10}
\end{aligned}
$$

$$
\text { lightyedes to pareses } d=228 y
$$

$$
\begin{aligned}
1 \text { parsec }= & 3.26 l_{y} \quad M \\
\frac{1}{3.26} \quad b= & 69.9 \\
& =-2.03 \log \left(\frac{70}{10}\right) \\
\text { absolute magnitude } & =\frac{-2.0}{}
\end{aligned}
$$

0	2	5

Tsih may eventually collapse to form a black hole.
Calculate the radius of the event horizon for a black hole with a mass 15 times that of the Sun.

$$
\begin{aligned}
& M_{T_{\sin }}=15 M \\
& R_{5} \sim \frac{2 \epsilon M}{C^{2}} \\
&=\frac{2 G 15 M O}{C^{2}} \\
&=\left(2 \times 6.62 \times 10^{-11} \times 15 \times 1.91 \times 10^{30}\right) / c^{2} \\
&
\end{aligned}
$$

| 0 | 3 |
| :--- | :--- | Type la supernovae can be used as standard candles.

0	3	1

It means it has a known

absolute magnitubel.

0	3	2	Sketch on Figure 2 the light curve for a type la supernova.

Annotate your graph with suitable scales and a unit for time.

Figure 2

Question 3 continues on the next page

Measurements of type la supernovae are used to find a value for the Hubble constant.

The distance from Earth is known for many type la supernovae.
Describe how these values of distance are used, with other data, to find the Hubble constant.

Your answer should include:

- the other data needed and how these data are used
- the graph plotted, including appropriate units for the axes
- how the Hubble constant is obtained and any limitations on the result.

To find the Hubble constant, you would need the redshift data flor the supernovae. You could use this to fist the velocity of recession. You would also neb 5 measure the wavelength of the spectral lines.

Ya vouls then plot a graph of velocity is distance from lath. suggester wits you could use are km / s br velocity and Mae for distance.

Hobbles constant can be calculated by taking the gradient of the graph.

One l'mitoten colt be that yare would need from lots of supernova. Also, at loge distances, the accelestion of the rives will affect the calculation.

| 0 | 4 |
| :--- | :--- | Table 2 gives data about the supergiant star Melnick 34 and the Sun.

Table 2

Name	Radius $/ \mathbf{m}$	Surface temperature $/ \mathbf{K}$
Melnick 34	1.4×10^{10}	53000
Sun	7.0×10^{8}	5700

\square Calculate $\frac{\text { power output of Melnick } 34}{\text { power output of the Sun }}$.

$$
p=\sigma A T^{4}
$$

$$
\text { pave ratio }=\frac{A_{M} T_{M}^{4}}{A_{\ominus} T_{\ominus}^{4}}
$$

$$
=30 \times 10^{6}
$$

$$
\text { answer }=\frac{3 \times 0^{6} 3.0 \times 10^{6}}{3}
$$

| 0 | 4 | 2 | Discuss why the evolution of a supergiant star in the local part of our galaxy could be |
| :--- | :--- | :--- | :--- | dangerous for life on Earth.

[2 marks]

