Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Sumame
Forename(s)
Candidate signature
I declare this is my own work.

A-level PHYSICS

Paper 3

Section A

Friday 5 June 2020

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Afternoon Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section A

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- |\quad A simple pendulum performs oscillations of period T in a vertical plane.

Figure 1 shows views of the pendulum at the equilibrium position and at the instant of release. Figure 1 also shows a rectangular card marked with a vertical line.

Figure 1

equilibraim position

| 0 | 1 | 1 |
| :--- | :--- | :--- | The card can be used as a fiducial mark to reduce uncertainty in the measurement of T.

Annotate Figure 1 to show a suitable position for the fiducial mark.
Explain why you chose this position.
[2 marks]

| 0 | 1. | 2 |
| :--- | :--- | :--- | The period of the pendulum is constant for small-amplitude oscillations.

Figure 2 shows an arrangement used to determine the maximum amplitude that can be considered to be small, by investigating how T varies with amplitude.

Figure 2

Describe a suitable procedure to determine $A \mathrm{R}$, the amplitude of the pendulum as it is released.
You may add detail to Figure 2 to illustrate your answer.
[2 marks]

\qquad
\qquad

Question 1 continues on the next page

| 0 | 1 | 3 |
| :--- | :--- | :--- | Figure 3 shows some of the results of the experiment.

Figure 3

Estimate, using Figure 3, the expected percentage increase in T when A_{R} increases from 0.35 m to 0.70 m . Show your working.

$$
\begin{aligned}
& A_{R}=0.35 \mathrm{~m} \quad T \\
& A_{R}=0.70_{m} \quad T \\
&=2.3225 \\
& \frac{2.355}{2.322} \times 100=101.4 \% \\
& \text { percentage increase }=1.4
\end{aligned}
$$

In another experiment the pendulum is released from a fixed amplitude.
The amplitudes A_{n} of successive oscillations are recorded, where $n=1,2,3,4,5 \ldots$.
Table 1 shows six sets of readings for the amplitude As.
Table 1

A_{5} / m	0.217	0.247	0.225	0.223	0.218	0.224

| 0 | 1 | 4 |
| :--- | :--- | :--- | Determine the result that should be recorded for $A 5$.

Go on to calculate the percentage uncertainty in this result.
I wails disregard the momolas result
0.247 .

Then I vail use the values bs

$$
\begin{aligned}
& \begin{array}{l}
\text { calculate a mean } \\
\\
\frac{0.217+0.225+\ldots \ldots}{5}=
\end{array} \frac{0.221 \mathrm{~m}}{2}=4 \times 10^{-3} \\
& \Delta_{\text {percentage uncertainty }}=\frac{0.221}{ \pm 4 \times 10^{-3}} \mathrm{~m}
\end{aligned}
$$

| 0 | 1 | $\mathbf{5}$ | Table 2 shows results for A_{n} and the corresponding value of $\ln \left(A_{n} / \mathrm{m}\right)$ for certain |
| :--- | :--- | :--- | :--- | values of n.

Table 2

n	A_{n} / m	$\ln \left(A_{n} / \mathrm{m}\right)$
2	0.238	-1.435
4	0.225	-1492
7	0.212	-1.551
10	0.194	-1.640
13	0.183	-1.698

Complete Table 2.

| 0 | 1 |
| :--- | :--- | :--- | Plot on Figure 4 a graph of $\ln \left(A_{n} / \mathrm{m}\right)$ against n.

Question 1 continues on the next page

$$
A_{n}=A_{0} \delta^{-n}
$$

where $\quad A_{0}$ is the amplitude of release of the pendulum δ is a constant called the damping factor.

Explain how to find δ from your graph.
You are not required to determine δ.

$$
\begin{aligned}
& \ln \left(A_{n}\right)=\ln \left(A_{0} \delta^{-n}\right) \\
& \ln \left(A_{n}\right)=\ln A_{0}+\ln \delta^{n} \\
& \operatorname{In} A_{n}=\ln A_{0}-\ln \delta
\end{aligned}
$$

using $y=m x+c$
ya is $I_{n} A_{n}-\ln \delta=$ gratinet

$$
e^{-g \text { rabuct }}=\delta
$$

| 0 | 2 |
| :--- | :--- | Figure 5 shows apparatus used to investigate the bending of a beam.

Figure 5

The beam is placed horizontally on rigid supports.
The distance L between the supports is 80 cm .
A travelling microscope is positioned above the midpoint of the beam and focused on the upper surface.

| 0 | 2 | 1 |
| :--- | :--- | :--- | Figure 6 shows an enlarged view of both parts of the vernier scale.

Figure 6

The smallest division on the fixed part of the scale is 1 mm .
What is the value of the vernier reading R_{0} in mm ?
Tick (\checkmark) one box.
34.8
37.8
45.8

49.8 \square

Question 2 continues on the next page

| 0 | 2 | 2 |
| :--- | :--- | :--- | from the midpoint.

Figure 7

The microscope is refocused on the upper surface and the new vernier reading R is recorded.
The vertical deflection s of the beam is equal to $\left(R-R_{0}\right)$.
The total mass m suspended from the beam is increased in steps of 0.050 kg .
A value of s is recorded for each m up to a value of $m=0.450 \mathrm{~kg}$.
Further values of s are then recorded as m is decreased in 0.050 kg steps until m is zero.

Student A performs the experiment and observes that values of s during unloading are sometimes different from the corresponding values for loading.

State the type of error that causes the differences student \mathbf{A} observes.
\qquad

| 0 | 2 | 3 | 3 |
| :--- | :--- | :--- | :--- | made from the same material as before.

Do not write outside the

Discuss one possible advantage and one possible disadvantage of using the thinner beam.

Question 2 continues on the next page

0	2	4	Figure 8 shows the best-fit line produced using the data collected by student \mathbf{A}.

Figure 8

It can be shown that $s=\frac{\eta m}{E}$
where E is the Young modulus of the material of the beam and η is a constant.

Deduce in s^{-2} the order of magnitude of η.

$$
E=1.14 \mathrm{GPa}
$$

$$
\frac{s}{m}=\frac{\eta}{E}
$$

$1.14 \times 10^{9} \times \frac{50 \times 10^{-3}}{0.49}=1.16 \times 10^{8}$

$$
0.44
$$

Question 2 continues on the next page

0	2	5
5	Student \mathbf{C} performs a different experiment using the same apparatus shown	

A mass M is suspended from the midpoint of the beam.
The vertical deflection s of the beam is measured for different values of L.
Figure 9 shows a graph of the results for this experiment.
Figure 9

Figure 9 shows that $\log _{10}(s / m)$ varies linearly with $\log _{10}(L / m)$.
State what this shows about the mathematical relationship between s and L.
You do not need to do a calculation.
\qquad
\qquad
\qquad

0	2	6

$$
\begin{aligned}
& \log _{.0}\left(80 \times 10^{-2}\right) \\
& \quad=-0.047
\end{aligned}
$$

$$
10 \times 0.997=5
$$

-1.52

$$
\log _{10}(s)=-1.52
$$

$$
10^{-1.52}=0.03 \mathrm{~m}
$$

$s=$ \qquad m

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{7}$ Determine M using Figure 8.

$$
\begin{aligned}
& \frac{50 \times 10^{-3}}{49}=2.102 \\
& M=0.102 \times 0.003 \\
& =3 \times 10^{-4}
\end{aligned}
$$

Figure 10 shows a partly-completed circuit used to investigate the emf ε and the internal resistance r of a power supply.

The resistance of \mathbf{P} and the maximum resistance of \mathbf{Q} are unknown.
Figure 10

| 0 | 3 | 1 | Complete Figure 10 to show a circuit including a voltmeter and an ammeter that is |
| :--- | :--- | :--- | :--- | suitable for the investigation.

\square
3

- a procedure to obtain valid experimental data using your circuit
- how these data are processed to obtain ε and r by a graphical method.
$1^{\text {s+ }}$ read the values on the
ammeter and Voltmeter and record
there. Then cringe the resistance
 different resistances. Then plot a graph
\qquad
$r=$ - gradient
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page

Figure 11 shows a different experiment carried out to confirm the results for ε and r.
Figure 11

Initially the power supply is connected in series with an ammeter and a 22Ω resistor. The current I in the circuit is measured.

The number n of 22Ω resistors in the circuit is increased as shown in Figure 11. The current I is measured after each resistor is added.

It can be shown that

$$
\frac{22}{n}=\frac{\varepsilon}{I}-r
$$

Figure 12 on page 22 shows a graph of the experimental data.

Question 3 continues on the next page

Figure 12

0	3	3	Show that ε is about 1.6 V .

[2 marks]

$$
\begin{aligned}
& \text { gradient }=\frac{I 1}{n} \div \frac{1}{I}=\frac{I}{n} \\
& =\frac{1}{14.06-0.68}=\frac{14}{0.0725} \\
& =0.6-0.8 \\
& \varepsilon=\frac{I R}{n}=0.07(25 \times 22 \\
& =1.59
\end{aligned}
$$

0	3	4	Figure 13 shows the circuit when four resistors are connected.

Figure 13

Show, using Figure 12, that the current in the power supply is about 0.25 A .

$$
\frac{1}{I}=4.2 \quad \Gamma=0.24 \mathrm{~A}
$$

0	3	5

- the potential difference (pd) across the power supply
- r.

The resistors of the circuit is $4 \propto \frac{1}{22}=\frac{1}{R_{1}}$

$$
n_{T}=\frac{22}{L}=5.5
$$

Ant $V=I R=5.5 \times 0.25=1.38 \mathrm{AV}$
$\varepsilon=I(R+r)$
$1.59=0.205(5.5+1)$
「

$$
\begin{aligned}
\mathrm{pd} & =\frac{1.38}{0.86} \mathrm{~V}
\end{aligned}
$$

Question 3 continues on the next page

Do not write

Figure 14

Three additional data sets for values of n between $n=1$ and $n=14$ are needed to complete the graph in Figure 14.

Suggest which additional values of n should be used. Justify your answer.
\qquad
$n=2$

$$
n=3
$$

\qquad
\qquad
\qquad

| 0 | 3 |
| :--- | :--- | :--- | 7 The experiment is repeated using a set of resistors of resistance 27Ω.

The relationship between n and I is now

$$
\frac{27}{n}=\frac{\varepsilon}{I}-r
$$

Show on Figure 14 the effect on the plots for $n=1$ and $n=14$ You do not need to do a calculation.

$$
\frac{27}{n}=\sum \frac{1}{I}-r
$$

