AQA

Please write clearly in block capitals. Centre number
 Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level

BIOLOGY

Paper 3

Time allowed: 2 hours

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer one question from Section B.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 78 .

Section A

Answer all questions in this section.
You are advised to spend no more than 1 hour and 15 minutes on this section.

| 0 | 1 |
| :--- | :--- | In one species of squirrel, Sciurus carolinensis, fur colour is controlled by one gene, with two codominant alleles. C^{6} represents the allele for grey fur colour, and $\mathbf{C}^{\text {B }}$ represents the allele for black fur colour.

Table 1 shows the three possible phenotypes.
Table 1

0	1	1	In a population of 34 S . carolinensis, 2 had black fur.

Use the Hardy-Weinberg equation to estimate how many squirrels in this population had brown-black fur. Show your working.

$$
p^{2}+2 p q+q^{2}=1 \quad p+q=1
$$

[2 marks]

$$
\begin{aligned}
& p=C^{G} c^{G} \\
& p q=C^{G} c^{B} \\
& q^{G}=C^{B} c^{B}
\end{aligned}
$$

$$
q^{2}=\text { black }=\frac{2}{34}=0.058823 \ldots
$$

$$
a^{2}=\sqrt{0.58823}=0.2425 \ldots
$$

$$
p=1-q=1-0.2425=0.75746
$$

$$
p^{2}=(0.75746)^{2}=0.57375
$$

$37 \% \times 34$

$$
\begin{aligned}
2 p q=1-p^{2}-q^{2} & =1-0.058823-0.57375 \\
& =1-0.367 \ldots \\
& =0
\end{aligned}
$$

Answer \qquad 12

| 0 | 1 | .2 |
| :--- | :--- | :--- | The actual number of squirrels in this population that had brown-black fur was 16.

Use all of the information to calculate the actual frequency of the $\mathbf{C}^{\mathbf{G}}$ allele.
Do not use the Hardy-Weinberg equation in your calculation.
Give your answer to 2 decimal places.

Answer \qquad

| 0 | 1 | 3 | 3 |
| :--- | :--- | :--- | :--- | They are now widely distributed across the UK.

S. carolinensis from both North America and the UK show exactly the same genotypic and phenotypic variation. An identical mutation causing black fur has also been found in several other species closely related to S. carolinensis.

Use this information to deduce which one of the following conclusions is most likely true.

Tick (\checkmark) one box.

A
The mutation that caused black fur happened after
S. carolinensis was introduced to the UK from North America.

B The mutation that caused black fur happened in a common ancestor of S. carolinensis and other closely related species.

C The mutation that caused black fur happened independently in S. carolinensis and all other closely related species.

D The phenotypic variation shown in S. carolinensis and other closely related species is caused by genetic drift.

Question 1 continues on the next page

The mutation that caused the $\mathbf{C}^{\text {B }}$ allele was due to a 24 base-pair deletion from the $C^{\text {c }}$ allele.

0	1	4	The protein coded for by the C^{B}
allele is			
306	amino acids long.		

Calculate the percentage reduction in size of the protein coded for by the C^{B} allele compared with the protein coded for by the $\mathbf{C}^{\mathbf{G}}$ allele.

Give your answer to 3 significant figures and show your working.

$$
\frac{24}{3}=8 \quad 306+8=314 \quad \frac{306}{314} \times 100=97.4522^{[2 \text { marks] }]}
$$

Answer \qquad 2.55%

In S. carolinensis, fur colour depends on the distribution and relative amounts of light pigments and dark pigments in the hairs of the fur. Figure 1 shows how the protein produced from the $\mathbf{C}^{\mathbf{G}}$ allele can result in the production of a light pigment or a dark pigment.

Figure 1

The deletion mutation in the C^{B} allele results in the production of a receptor protein that does not have glutamic acid. The lack of glutamic acid in the receptor protein has the same effect as aMSH leaving the receptor protein.

| 0 | 1 | 5 |
| :--- | :--- | :--- | $C^{B} C^{B}$ have black fur rather than grey fur.

[3 marks]
The lad of pletamic acid leaves the receptor activated pismeraently. So the receptor doesnt need the binding of \mathcal{A} SA to become activated. Therefore, ASIP may not be able to bind to the nepepter protein. So, ongं the dork pigment is produced.
\qquad
\qquad
\qquad

Describe how the human immunodeficiency virus (HIV) is replicated once inside helper T cells (T_{H} cells).

The RNA excreted cate the ceploplasm gets converted to DNA bs the enzyme reverse transciptase. This DNA then gets inserted into the genome of the Tel. DNA inserted into the genome gets transcribed into mANA, which then gets trouslated to new viral proteins used to assemble viral particles.
\qquad
\qquad
\qquad
\qquad
\qquad

HIV-1 is the most common type of HIV. HIV-1 binds to a receptor on T_{H} cells called

Current treatment for HIV-1 involves the use of daily antiretroviral therapy (ART) to stop the virus being replicated. Only 59% of HIV-positive individuals have access to ART.

Scientists have found that two HIV-1-positive patients (\mathbf{P} and \mathbf{Q}) have gone into remission (have no detectable HIV-1). This happened after a blood stem cell transplant (BSCT).

- Patient \mathbf{P} was given two BSCTs, and patient \mathbf{Q} was given one BSCT.
- All BSCTs came from a donor with T_{H} cells without the CCR5 receptor.
- In addition, patient \mathbf{P} had radiotherapy, and patient \mathbf{Q} had chemotherapy. Both of these treatments are toxic.
- Both patients (\mathbf{P} and \mathbf{Q}) stopped receiving ART 16 months after BSCT.

18 months after stopping ART, both patients had no HIV-1 RNA in their plasma, no HIV-1 DNA in their T_{H} cells and no CCR5 on their T_{H} cells.

| 0 | $\mathbf{2} .2$ Use the information given to evaluate the use of BSCT to treat HIV infections. |
| :--- | :--- | :--- | [5 marks]

For: As there is no trace of NIV-1 RNA in them tested it could have been an effective form of treatment.
The patients got transplant withonit CCRS receptor so wont get HIV-1 in the future
For patient Q only 1 transplant was enough, so don't even need 2 like P.

Against:
Several treatments mixed so cant conclude the offectivenses of them separately.
Treatment found to be sucessfall for only HIV-1 strain.
Treatment relies on donors, which there may not be enough to treat mary patience

\section*{| $\mathbf{0}$ | 3 |
| :--- | :--- |}

Scientists investigated movement in adult pine beetles. Adult beetles emerge from cracks in tree bark.

The scientists released a newly emerged adult beetle, \mathbf{G}, from the centre of a sample area that had a single light source coming from one direction. They made a drawing of the beetle's path of walking. They repeated this with three more beetles, \mathbf{J}, \mathbf{P} and \mathbf{R}.

Figure 2 shows the scientists' results.
Figure 2

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ Name the type of behaviour shown by beetles $\mathbf{G}, \mathbf{J}, \mathbf{P}$ and \mathbf{R}, and suggest |
| :--- | :--- | :--- | one advantage to adult beetles of the type of behaviour shown.

[2 marks]
Behaviour Positive shote taxis

Advantage to find a mate
\qquad
\qquad

At higher temperatures and higher light intensities, adult pine beetles normally

- move more
- fly rather than walk.

When preparing to fly, these adult beetles walk slowly. The scientists investigated the movement of adult beetles at different temperatures, and in the light and the dark. They created a box that was half in the light and half in the dark. They released an adult beetle at the midpoint of the central dividing line between light and dark areas. They recorded the path of the beetle's movement and its location after 5 minutes. From this, they calculated the mean speed of movement. They repeated the experiment with many beetles and at several temperatures.

Figure 3 shows the scientists' results.
Figure 3

0	3	2

- there is a significant change in movement between $35^{\circ} \mathrm{C}$ and $37.5^{\circ} \mathrm{C}$
- between $35^{\circ} \mathrm{C}$ and $37.5^{\circ} \mathrm{C}$, more beetles move away from the light
- between $35^{\circ} \mathrm{C}$ and $37.5^{\circ} \mathrm{C}$, more beetles have a slower walking speed.

Suggest reasons why these conclusions might not be valid.
There was no statistical analysis so cont conclude 4 results are significant.
Even after $35^{\circ} \mathrm{C}$ all the was to $36.5^{\circ} \mathrm{C} 50 \%$ of the beetles are on tight of more are on the bight suchestill. There cant be any conclusion of speed above $35^{\circ} \mathrm{C}$ as there is re data for speed above $35^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 4 | Freshwater marshes have one of the highest rates of gross primary production (GPP) |
| :--- | :--- | :--- | and net primary production (NPP) of all ecosystems.

Carbon use efficiency (CUE) is the ratio of NPP:GPP. Freshwater marshes have a high CUE.

| 0 | 4 | 1 |
| :--- | :--- | :--- | Use your knowledge of NPP to explain why freshwater marshes have a high CUE and the advantage of this.

Do not refer to abiotic factors in your answer.

Explanation low levee of respiration

Advantage more growth and buomass gain.

0	4	2

Use your knowledge of the nitrogen cycle to suggest why these soils contain relatively high concentrations of ammonium compounds and low concentrations of nitrite ions and nitrate ions.

More denitrifiging bacteria will be involved in
denitrification, converting nitrates back to atmospheric nitrogen,
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { A student investigated the growth rate of a freshwater marsh plant. } \\
& \text { The growth rate }(R) \text { of a plant can be determined using this equation. } \\
& \qquad R=\frac{\left(\ln W_{2}-\ln W_{1}\right)}{t} \\
& \text { Where } \\
& \ln =\text { natural logarithm } \\
& t=\text { duration of the investigation in days } \\
& W_{1}=\text { plant biomass at the start of the investigation } \\
& W_{2}=\text { plant biomass at the end of the investigation } \\
& \text { The student used the equation above; however, she substituted height for } \\
& \text { biomass. This was because she did not want to destroy the plants to measure their } \\
& \text { biomass. }
\end{aligned}
$$

| 0 | 4 | 3 | State the assumption the student has made and suggest why this assumption might |
| :--- | :--- | :--- | :--- | not be valid.

[2 marks]
Assumed height is dineetly proportional to biomass, nat considering other aspects, lite roots add to biomass but dont add to height.

| 0 | 4 | 4 |
| :--- | :--- | :--- | At the end of the investigation, the student noted the freshwater marsh plant had grown 268 mm in height, and now measured 387 mm . She calculated the rate of growth (R) to be $0.097 \mathrm{~mm} \mathrm{~m}^{-1}$ day $^{-1}$

Use this information and, substituting height for biomass, use the equation to calculate the duration of the student's investigation.

Give your answer to the nearest full day. Show your working.

$$
\begin{aligned}
& R=\frac{(\ln (387 \mathrm{~mm})-\ln (119 \mathrm{~mm}))}{t} \\
& t=\frac{5.95842 \ldots-4.77948}{0.097}=12.1577 \\
& \Rightarrow 12 \text { days }
\end{aligned}
$$

| 0 | 5 | .1 |
| :--- | :--- | :--- | The action of endopeptidase and exopeptidases can increase the rate of protein digestion. Describe how.

[2 marks]
endopeptidases hydrolise pepticle bonds at the middle of polypeptides, while exopeptidases hifdrogse peptide bonds at the ends. As endopeptidises cut up pilypiphicde more ends get exposed for exopeptictases to clecure off from.

| 0 | 5 | 2 |
| :--- | :--- | :--- | As humans age, there is a decrease in body protein.

Give the name of one body protein that could have resulted in:
reduced muscle power \qquad
reduced immunity
antibodies

Scientists investigated the effect of two types of dietary protein on the ability of old men to produce body proteins.

Table 2 shows information about the two types of dietary protein investigated.
Table 2

Physiological factor	Name of dietary protein	
	Casein	Whey
Rate of absorption of dietary protein / mmol dm amino acids in blood plasma h^{-1}	3.05	4.33
Stimulation of protein synthesis	Higher rate	Lower rate
Breakdown of body proteins	No effect	Inhibitory effect

Figure 4 shows the percentage of protein absorbed that becomes body protein in old men following a meal of casein or whey.

A statistical test confirmed that the difference between the results shown in Figure 4 was significant.

| 0 | 5 | 3 | 3 |
| :--- | :--- | :--- | :--- | net gain of body proteins. Use the information provided to explain your answer.

When as it has the factor rate of absorption, while still stimulates protein synthesir. But it also inhibits the breakdown of baccy protein, whole casein doesnt.
Sognificantly moe of it becomes batty protein
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 6 | Plants transport sucrose from leaves to other tissues for growth and storage. |
| :--- | :--- | :--- | SUT1 is a sucrose co-transporter protein.

Scientists investigated whether the cells of tobacco plant leaves used SUT1 to transport sucrose to other tissues.

| 0 | 6 | 1 |
| :--- | :--- | :--- | The scientists used a radioactively labelled DNA probe to show that the cells of tobacco plant leaves contained the SUT1 gene.

Describe how they would do this.
Do not include PCR in your answer.

Extract DNA from the sample and combine it with restriction endonnelease errzgme. The enzyme will cut the DNA into fragments at specofuc places. Seperate out these fragments dy electrophoresis. Treat DNA tor seperate the double strands, exposing the nuclear bases.
Probe is then able to bind only to pase pairs coding for SUT1 gene. Then orate use autoradiograpty to identity if probe is bound to sample or nor.
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 6 | 2 |
| :--- | :--- | :--- | To study the role of SUT1 in tobacco plants, scientists reduced the expression of the SUT1 gene.

When the SUT1 gene is transcribed, the SUT1 mRNA produced is called 'sense' SUT1 mRNA. The scientists genetically modified plants by inserting an extra gene so that this also allowed the production of 'antisense' SUT1 mRNA.

The scientists had two types of tobacco plants:

- type \mathbf{A} - plants that were genetically modified
- type B - plants that were not genetically modified.

Suggest how the production of 'antisense' SUT1 mRNA in type A plants would reduce the expression of the SUT1 gene.
'antisense' mRNA is complementary to the 'sense' mRA so it would bind to each other to form a double strand. Ribosomes cant bind to double strand RNA, so translation is prevented. So less SUT1 protein is produced.
\qquad

Question 6 continues on the next page

| 0 | 6 | 3 | 3 |
| :--- | :--- | :--- | :--- | The scientists hypothesised that lower rates of sucrose transport from leaves would cause reduced growth.

To test this hypothesis, the scientists provided leaves of type \mathbf{A} and type \mathbf{B} plants with labelled carbon dioxide (${ }^{14} \mathrm{CO}_{2}$). To estimate sucrose transport out of leaves, they measured the percentage of ${ }^{14} \mathrm{C}$ remaining in the leaves for 16 hours.

Figure 5 shows their results.
Figure 5

Percentage of ${ }^{14} \mathrm{C}$ remaining in the leaves

Calculate the ratio of percentage of ${ }^{14} \mathrm{C}$ remaining in leaves of type \mathbf{B} to type \mathbf{A} plants 16 hours after providing ${ }^{14} \mathrm{CO}_{2}$

$$
\begin{aligned}
& B-38 \% \\
& A-88 \%
\end{aligned} \quad \div 88\binom{38: 88}{0.43181} \div 880
$$

Answer \qquad

| 0 | 6 | 4 | In type \mathbf{B} plants, the percentage of ${ }^{14} \mathrm{C}$ remaining in the leaves does not reach |
| :--- | :--- | :--- | :--- | zero per cent, as shown in Figure 5.

Suggest two reasons why.

Question 6 continues on the next page

The scientists measured physiological differences between type A plants and
type B plants.

Table 3 shows the scientists' results as they presented them.
Table 3

Physiological factor	Type of tobacco plant	
	Type A	Type B
Rate of sucrose transport from leaf cells $/ \mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$	0.1	3.7
Leaf sucrose concentration $/ \mathrm{mmol} \mathrm{m}^{-2}$	22	4
Ratio of shoot:root dry mass	$6: 1$	$2: 1$
Rate of photosynthesis $/$ μ mol glucose $\mathrm{m}^{-2} \mathrm{~s}^{-1}$	4	14

Sucrose is able to inhibit the production and activity of rubisco in leaves of a plant.

| 0 | 6 | 5 | Use all the information to suggest and explain how the physiological factors in |
| :--- | :--- | :--- | :--- | Table 3 would contribute to the decreased dry mass observed in type A plants.

In Type A there c's less SUT1 expression, so less protein SUT1, so less sucrose is exported from leaf cells. This leads to a build up of its concentration. The increased concentration inhibits rubisco, so less ${ }^{14} \mathrm{CO}_{2}$ gets fixed into GP.
Less sucrose is transposed to the roots from the leaf so cess growth and developmew will happen there shifting it to a larger shoot to rect dry mass ratio. Less growth in roots means less minsmals extracted from soil, limitis the plants growth rate, Reducing the plants overall growth rate.
\qquad
\qquad
\qquad

Section B
Answer one question.
You are advised to spend no more than 45 minutes on this section.

0	7	Write an essay on one of the topics below.

Either DNA protein \rightarrow hormone immure system

| 0 | 7 | 1 |
| :--- | :--- | :--- | The importance of complementary shapes of molecules in organisms

[25 marks]
Or

0	$\mathbf{7}$	$\mathbf{2}$	The importance of ions in metabolic processes

A lot of bidogical processess are quite specif's, requiring specific 'machinery' to mate them wort.
To achive this complementary shapes ate common, to allow these processes to be distchet and specific for their function.

Lets take for instance proteins. They are involved in many processes, but maybe the best known of all are enzymes, that help to catalyse chemical metabolic reactions. Each different encore has a specific active side that is complementary to the shape of the substrate, as suggested by the lock and key thong. This enables it to be a specialised catalys for a curtain type of reaction. An example of this is Rubisco an enzyme involved in the light independent reaction of photosynthesis's.

Reebisco focitite hes a complementary shape to bind Ru BP, combining is with CO_{2} and facilitating its conversion tr 3PG. This is a vital step in the Calvin cycle, which produces sugars recess ar y for plants to gran end repair then selves.

However, proteins dort only show their specificity as enzeyrues. Hormones are also enzymes that for proteins that fill in a specific function in the booby, due to their specific shape. Fuss \& Hormones get produced by glands and they travel as chemical messengers in the blood to their target organs. They can stimulate charge to the functioning of the target organ thanes to their complementary shape to receptors found on the swrface of it. An example of this would be insulin binding to insulin receptors on liver and muscle cells, regulating toe brood glucose levels. The binding te receptors is possible as the receptor has a complementary shape to the shape of insulin. The receptor is a protein that spans the plasma membrane of the cell, so as it binds to insulin its shape changes on the inside of the cell meunborare. This action exposes another receptor suite that is complementary to adensl cyclase, which then gets stimulated by this specific action causing moons. eventually mare glucose to be taken up by these cells. Hence complementary binding of hormones and
specific receptors allow the regulation of blood glucose levels in the body.

Another aspect where complementary shapes are important in biog is are with gene replication and expression. The complementary base pairings in a DNA molecule, keep DNA structure stable and replicatable, on which both sexual and asexual reproduction depend on. The complementary pairing of A to T and C to g allow each strand of the double helix to be used as a template strand, of genetic information heeds to be replicated for cell division. While in expression specific regulatory factors can bind to DNA to up or down regulate the expression of a certain gene. This can happen as they are complementary to the sequence of base pairs found on the DNA strands.

Furthermore, the complementoms pairing of a codon on the mRNA to the anti codon on the $G R N A$ allows ribosomes to translate the sequence of the MRNA base pairs, into a specific sequence of amino acids.

Lastly but not the least, Complementary shapes are used by the immure system and cell recognition. Every cell, phatogen, virus have
a unique set of antigens on its surface, These are often glycoproteins or glycolipids and specific to a given type of cell. This enables for cells of The same body to recognise each other, as they have receptors that are complementary to these antigens. This allows aetesion between cells.
Another bey process is done by T lymphocytes, which search the body for invading phatogens pathogens. They can recognise them by antigens on the surface of these phatogens which is complementary to the receptors on the surface of T cells. Hence bringing about a specific immure sesponse.
\qquad

