Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level

BIOLOGY

Paper 3

Monday 15 June 2020

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer one question from Section B.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.
$=$.

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 78 .

Section A
Answer all questions in this section.
You are advised to spend no more than 1 hour and 15 minutes on this section.

| 0 | 1 |
| :--- | :--- |\quad Guppies are small fish. Female guppies are dull in colour. Male guppies can be bright or dull in colour.

Scientists investigated the effect of female brain size on choosing a mate. They used laboratory-bred female guppies with large brains and with small brains.

They set up a fish tank as shown in Figure 1.
Figure 1

They observed each female for 10 minutes and recorded which male they were attracted towards. They repeated this with 45 large-brained females and 45 small-brained females.

0	1	1

1 Courtship behaviour may need more than visual through the banner

210 minutes may be to short for all percales
\qquad

3 Laboratory roused finales mas act/behwre differently to wild guppies.
\qquad

Guppies with large brains are better at identifying predators.
The scientists found that only female guppies with large brains were attracted to male guppies bright in colour.

0	1	2	Suggest and explain the advantage of this behaviour to the population of guppies.

[3 marks]
Females with larger brain will choose males with brighter colow. So their offspring will have a brighter colour. This gives them an advatage as brigther offspring will attract even more large brain females. The populatia will have larger brains over time. The population hay be able to use their brain for large brain to get better at other functions, like auciding predators.

0	1	3	Describe how the behaviour of female guppies could result in sympatric speciation.

2 populations could get isolated by reproduction. So no geographical harrier is between the few populations populations. They live in the some place but dort breed with eactiotler as dort recognise each other aces a suitable mate. Over tine the freghencs of alleles change in the 2 populations SC much Sc that thess cant reprodence eng mare to produce fertile offspring, even if they friect.

0	2	In northern India, there is a conflict of interests between farmers of livestock (eg cows)

and people trying to conserve ibex (a type of wild goat).
When livestock are given extra food, their populations can grow too large and compete with ibex.

| 0 | 2 | 1 |
| :--- | :--- | :--- | Name the type of competition between livestock and ibex.

Interspecific (between species)

Livestock will outcompete ibex if they:

- are in the same habitat
- eat a similar diet.

Scientists investigated this conflict of interests.
Table 1 summarises some of the scientists' findings.
Table 1

Type of livestock	Difference between livestock food and ibex food	Difference between livestock habitat and ibex habitat
Cow	1.0	1.5
Horse	0.5	0.0
Yak	0.0	2.0

* A score of 0.0 indicates that the food or habitat is the same.

| 0 | 2 | 2 |
| :--- | :--- | :--- | There must be a balance between the need for conservation of the ibex and the need for farmers to keep livestock.

Using all the information, suggest and explain three actions that the farmers could take to achieve this balance.

1 Keep caus as they have the least similar food and habitat to the ibex.
\qquad

2 Dont provide extra food to livestock, so their population cant growsobigg they cause to much competition.

3 They cauld'lkep just horse, as their habitat matches perfectly the ibex, boors es wont and hearses eat very similar food to the ibesc.

0	3	In Europe, viruses have infected a large number of frogs of different species.

The viruses are closely related and all belong to the Ranavirus group.
Previously, the viruses infected only one species of frog.

| 0 | 3 | 1 |
| :--- | :--- | :--- | Suggest and explain how the viruses became able to infect other species of frog.

[2 marks]
Mutation in the viral RNA or DNA to code for different vital atachment proteins. New proteins
can attach to the surface of cells for other
frogs now.

| 0 | 3 |
| :--- | :--- | :--- |

2
Name two techniques the scientists may have used when analysing viral DNA to determine that the viruses were closely related.

1 Genome sequencing
2 genetic fingerprinting.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ Determining the genome of the viruses could allow scientists to develop a vaccine.

Explain how.
[2 marks]
Could identify proteins that are part of the genome and getting expressed. One of these proteins is the antigen that could be produced and loused in a vaccine.
\qquad
\qquad

Ranavirus.
You can assume that the B lymphocytes of a frog respond in the same way as B lymphocytes of a human.

Do not include details of the cellular response in your answer.

The vaccine contains the antigen found on the surface of the virus. B calls bind to this antigh with their compleneenters receptor. This stimulates then to clone themselves Jwough mitosis. Also cause B cell, to make plasma cells and these Start to produce antibodies.
Some of the B cells become mention cells for future infections.

Turn over for the next question

| 0 | 4 |
| :--- | :--- | Table 2 shows information about two types of medicine.

Table 2

Name of medicine	Mass of medicine in one tablet $/ \mathrm{mg}$	Maximum dose of medicine an adult is allowed	Mass of sodium in one tablet $/ \mathbf{g}$
Aspirin	300	0.6 g every 4 hours 3.6	0.15
Paracetamol	50.3 g	1.0 g every 6 hours	0.43

| 0 | 4 | 1 |
| :--- | :--- | :--- | A journalist studied the data in Table 2. She made the following suggestion.

'If an adult takes the maximum number of tablets allowed for either of the medicines, then the person would have more than the RDA of sodium.'

The RDA (recommended daily allowance) of sodium for an adult human is 2.4 g per day.

Is the journalist's statement true for both of the medicines in Table 2?
Use suitable calculations to support your answer.
Show your working.
$0.6 \times 6=3.6$
$1 \times 4=4$
$\frac{3.6}{0.3}=12$
$\frac{4}{6.5}=8$
$12 \times 0.15=1.8 \mathrm{~g}$
$8 \times 0.43=3.44 \mathrm{~g}$
Aspurin
Paracetand

Doctors investigated the link between high sodium concentrations in medicines and hypertension (high blood pressure).

They analysed medical records of patients. 1292337 of these patients had taken medicines containing high sodium concentrations. Each of these patients was paired with a patient from a control group.

| 0 | 4 |
| :--- | :--- | :--- | Z Give two factors that should have been the same for each pair of patients and one factor that should have been different.

[2 marks]
Same factor 1 \qquad
Same factor 2 \qquad
Different factor \qquad

| 0 | 4 |
| :--- | :--- | .3 Doctors found:

- 4.73% of the patients who had taken medicines containing high sodium concentrations suffered from hypertension
- there were 7.18 times fewer control patients with hypertension.

Calculate how many of the control patients had hypertension.
Show your working.

$$
\begin{aligned}
1292337 & \times 0.0473 \\
& =61127.5401 \\
& \Rightarrow 61127 \\
\frac{61127}{7.18} & =8513
\end{aligned}
$$

Answer \qquad patients

Question 4 continues on the next page

| 0 | 4 | 4 |
| :--- | :--- | :--- | A high concentration of sodium in the blood can affect blood volume and cause hypertension.

Use your knowledge of water potential to suggest how high sodium concentrations in the medicines taken could affect blood volume.

Sodium ions in the blood lower its water potential. This causes water to move in by osmosis: from the calls and tissue fluid.
This increases the volume of blood plasma in the sauce space -Causing increase in the pressure,
\qquad
\qquad
\qquad
\qquad
0.

1
In the UK in 2016, there were 525048 deaths. Cancer caused 30.4% of all deaths. Throat cancer caused 5% of all deaths from cancer.

Calculate the mean number of people who died of throat cancer per month in 2016.
Show your working.

$$
\begin{aligned}
& 525048 \times 0.304 \\
& \\
& =159614.59 \\
& \\
& \Rightarrow 159615 \\
& 159615 \times 0.05 \\
& \\
& =79811 y \\
& \frac{7981}{12}=665 / m \text { month }
\end{aligned}
$$

Answer \qquad 665 people per month

Increased methylation of the promoter region of a tumour suppressor gene causes one type of human throat cancer.

In this type of throat cancer, cancer cells are able to pass on the increased methylation to daughter cells. The methylation is caused by an enzyme called DNMT.

Scientists have found that a chemical in green tea, called EGCG, is a competitive inhibitor of DNMT. EGCG enables daughter cells to produce messenger RNA (mRA) from the tumour suppressor gene.

0	5	2

[3 marks]
EGCG binds to the active site of DNMT. This "inactivates" DNMT, as it can no longe methyl late tumer suppressor gene. Transcripton factor can bind to gene and it can be expressed, as RNA polymerase an also lind to gere and transcribe it.

The scientists investigated the effect of different amounts of EGCG on the growth rate of the throat cancer cells grown in vitro. Their results are shown in Figure 2.

Figure 2

This figure has been removed due to third-party copyright restrictions.

| 0 | 5 | 3 |
| :--- | :--- | :--- | A reporter who reviewed all of this work concluded that drinking green tea could be a cure for cancer.

Suggest three reasons why his conclusion might not be valid.

1 \qquad
\qquad
\qquad

2 \qquad
\qquad
\qquad
3 \qquad
\qquad
\qquad

\section*{| 0 | 6 | 1 Describe the advantage of the Bohr effect during intense exercise. |
| :--- | :--- | :--- |}

As CO_{2} concentration in creases in the blood, so does the blood pH decrease. As pit decreases oxygen dissociation poon havenoglobin sicreases. So more Gxaggen is released for cells to respire aerobically.
\qquad
\qquad

A cyclist completed a fitness test on an exercise bike. The intensity of the exercise was increased every 10 seconds. The test finished when he was unable to cycle any further. The partial pressure of oxygen $\left(\mathrm{pO}_{2}\right)$ and of carbon dioxide $\left(\mathrm{pCO}_{2}\right)$ in air breathed out was measured.

Figure 3 shows the results of the cyclist's fitness test.
Figure 3

Ventilatory threshold (VT) is a measure of the point when anaerobic respiration increases because aerobic respiration alone can no longer maintain muscle contraction.

0	6	2
VT		

Use Figure 3 to determine the time after the exercise started when the cyclist reached VT.

$$
10
$$

Calculate the ratio of pO_{2} to pCO_{2} in breathed-out air at this time.
Show your working.

$$
\begin{aligned}
& \mathrm{pO}_{2}-10.8 \mathrm{kPa} \\
& \mathrm{PCO}_{2}-6.4 \mathrm{kPa}
\end{aligned}
$$

$\left.6.4 C_{1}^{10.8: 6875: 1} 1\right) \div 6.4$

Time when the cyclist reached $\mathrm{VT}=$ \qquad min

$$
\text { Ratio of } \mathrm{pO}_{2} \text { to } \mathrm{pCO}_{2} \text { at } \mathrm{VT}=1.6 \mathrm{~g} \text { : }
$$

| 0 | 6 | 3 | An increase in the intensity of exercise produces an increase in the volume of |
| :--- | :--- | :--- | :--- | carbon dioxide produced.

However, Figure 3 shows that the pCO_{2} in air breathed out did not show a large increase during the exercise.

Suggest one physiological change that would cause this result. Explain how the physiological change would allow for the removal of the increase in the volume of carbon dioxide produced.

Physiological change Increased tidal volume

Explanation
 pCO_{2} 2 per brett breath, but different volume per breath.

Question 6 continues on the next page

When muscle fibres have very low concentrations of ATP, they may get ATP in the following ways.

- AMPK (an enzyme) oxidises fatty acids.
- Phosphocreatine donates phosphate to ADP in anaerobic conditions.

Figure 4 shows how these chemicals work.
Figure 4

| 0 | 6.4 At more than 80% of maximum muscle effort, ATP can only be made for a |
| :--- | :--- | :--- | limited time.

Use Figure 4 to suggest one reason why.
Tick (\checkmark) the correct box.

ATP cannot move into muscle fibres at a fast-enough rate.

Muscle fibres have a limited amount of phosphocreatine.

Muscle fibres produce too much lactate.

Muscle fibres quickly run out of ADP.

 slow muscle fibres at rest.

Use Figure 4 to justify why professional athletes are not allowed to take GW1516.
Do not include details of chemiosmotic theory in your answer.
If $G W 1516$ is used ut activates more AMPK sc moe acetylcoenvyme $A E$ are made. These enter the Krebs cycle. Tinese coenregmes are then reduced in the Krebs cycle. If there ar more then the ne will be more reduced cocurgonen This means more ATP can be produced.

With GW1516 athletes could build slow muscle without exercise. This new slow unuscle would help them delay the point when anerobic respiration starts.
\qquad

EPO is another performance-enhancing drug. It can increase the haematocrit (the percentage of red blood cells in blood).

EPO causes high density of red blood cells so causes blood to be thicker. This increases the risk of a blood cloth a coronary artery getting blockers
\square 0 . 7

7 The normal haematocrit for human males is $47(\pm 5) \%$. For professional male cyclists, the maximum haematocrit allowed is 50%.

A student suggested that professional male cyclists should be allowed to use EPO until their haematocrit is 50%.

Give two reasons why this suggestion is not valid.

1 Cyclist with lower $\%$ gain larger advatage from use than ones abreades closer to 50%

2
 not worth it.
\qquad

Section B
Answer one question.
You are advised to spend no more than 45 minutes on this section.

0	7	Write an essay on one of the topics below.

Either

| 0 | 7. | 1 |
| :--- | :--- | :--- | The functions of enzymes and their importance in organisms.

or

| 0 | 7 | 2 |
| :--- | :--- | :--- | The causes and importance of variation and diversity in organisms.

Plan

DNA. Replication/experssion	Digestion
\rightarrow RNA, polymerase /DNA pay...	\rightarrow amylase - starch
\rightarrow ligase	\rightarrow endo and exopeptidase
helicase	

Enzymes

Phagocytosus	Photosynthesis/respiration
Cystic enzymes in photosystem II	
lysosone.	Rubisco leinase enzyme
	ATP synthase,
	enzymes in respiration
odecorborylase enzyme	

07.1

Enzymes are essential part of most life processes. As biological catalysts they fill in an important tole in mediating biochemical reactions in beth eukaryotic as well as prokaryotic organisms. Their specificity is due to their particular shape in their tertions structure. All enzymes ar pdypephides, so proteins, but not all, but a lot of proteins are enzymes.

They play important roles in DNA replication as well as gene expression. DNA helicase is vital for DNA replication, es its able to bund 'unripp'the double strand, breaking appart the hegdrogen bonds betwan base pairs. Also DNA polymerase plays a role in genome replication, by joing up necoleotudes that are puree and paired up along DNA template strand. This cellows the formation of 2 sets of the original DNA cos identical copies of each other. This is a vital process for mitosis to be able to happen in cell, which is essential for a body to grew and repair.

Enzymes such as RNA polymerase, similarly to DNA polymerase use the template DNA stound to
form a new nucleotide chain. However, this is an ERNA strand not DNA. IMRNA is used in the expression of a cells genome into its proteome, hence the production synthesis of proteins. This is also a vital process relying on enzymes, as enzones themseffs are proteins and rely on protein synthesis to be made.

Sone proteins produced in protein syuthesu's are digestive enregmes. These get secreted outside of cells and act on ingested particles to break then down so the smaller monomers can then be absorbed into the bloodstream. An example of this would be amylase that breaks down starch. Starch forms the large part of the diet of humans and many other organisms. Anylage hydrolyses starch into maltose. This then gets hegdrobsed further into glucose by maltase. This ghacose is thea necessassy to be transported to cells and used in respiration to produce ATP for vital bodily processes.

The digestion of proteins and lipids $\dot{a} l z o$ happens by enzymes proteases and lipases. Prating Proteases have different types like endo-or exopepticlases.
They myclolyse polypeptide choirs at different locations, allowing the mon efficient breakdown
of proteins. This is possible due to the specificity of proteases, due to their active site, which is of the substrate they can break down.

Phago gnosis's of phatogens is one form of the bodies defense against infection. Once the phatoger is trapped their vesicle containing it fuses with the lysosore. This contowing many lytic enzeques, that eve able to hydrolyse the phatogen and break it down into its components. This allows it to clestroy the proteges pathogen and hence prevent infection.

Lastly, but not least, both vitae processes of respiration and photosynthesis rely om enzymes. Rubisco has been called the 'most important enzyme'. Thus is due to ids massive role in photesynthesus, combining RuMP with CO_{2}, so involved in Carbon fixation. This means we can thank photosyntesus and therefore Rubisco for the development of an oxygen sion atmosphere on our planet. Hence the ability for animal end other forms of life to evolve.

Another impritand enzyme is ATP synthaso, involved in bath photosynthesis and tespirateson. Its involved in the production of ATP from ADP and Pi. As ATP is a form of shard term energs storage
this ensure is in direct control to mow mulch everong is avilabd to cells. Therefore, if caries a vital role in the life of beth onvinals ard plants.
\qquad

