$A Q A$

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level

BIOLOGY

Paper 2

Thursday 11 June 2020
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91 .

Answer all questions in the spaces provided.

Do not write outside the

Figure 1

0	1

1 Suggest and explain how the interaction be
could cause the pupil to constrict (narrow).
\qquad Circular muscles will contract pulling the pupil inwards. Radial muscle relax.
\qquad
\qquad
\qquad
\qquad

| 0 | 1 | 2 |
| :--- | :--- | :--- | The fovea of the eye of an eagle has a high density of cones. An eagle focuses the image of its prey onto the fovea.

Explain how the fovea enables an eagle to see its prey in detail.
Do not refer to colour vision in your answer.
Very withe betinal converganse, so veers high acuity. Cones are connected to seperate,
individual neuroses, so signal from each can be defected seperately, as seperente impulses sent to the brain.

Can be distinguished between 2 different cones being stimulated.

| 0 | 1. | 3 |
| :--- | :--- | :--- | The retina of the human eye has an area of approximately $1.094 \times 10^{3} \mathrm{~mm}^{2}$

The circular fovea in a human eye has a diameter of $3 \times 10^{3} \mu \mathrm{~m}$
Calculate the area of the fovea as a percentage of the area of the retina.
The area of a circle is πr^{2}. Use $\pi=3.14$ in your calculation.
Show your working.

$$
3000 \mu \mathrm{~m}=3 \mathrm{~mm} \Rightarrow 1.5=r
$$

$$
\begin{aligned}
\frac{(1.5)^{2} \times 3.14}{1.094 \times 10^{3}} & =6.4579 \times 10^{-3} \\
6.4579 \times 10^{-3} \times 100 & \Rightarrow \frac{0.6457 \ldots}{0.6 \%}
\end{aligned}
$$

Answer \qquad 0.6 \%

Question 1 continues on the next page

| 0 | 1 | 4 |
| :--- | :--- | :--- | The retina of an owl has a high density of rod cells.

Explain how this enables an owl to hunt its prey at night.
Do not refer to rhodopsin in your answer.
High visual sensotivi's, so light nethected even at low intensity can be picked up. Many rods are connected to a single neurone, so stimulation of and a single tod captor will generate rods at only low intensity will combined produce exanoh stimultation to neuoone to overcome the threshold to produce nerve impulse.
\qquad

| 0 | 2 |
| :--- | :--- | Testosterone is a steroid hormone that belongs to a group of male sex hormones called androgen.

0	2	1

Explain why steroid hormones can rapidly enter a cell by passing through its cell-surface membrane.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 2 | 2 |
| :--- | :--- | :--- | In the cytoplasm, testosterone binds to a specific androgen receptor (AR).

An AR is a protein.
Suggest and explain why testosterone binds to a specific AR.
Receptor has a specific shape complementary to the terstosterones shape. This is clue to highly specific pertiory structure and folching of proteins
\qquad
\qquad
\qquad

Question 2 continues on the next page

| 0 | 2 | 3 |
| :--- | :--- | :--- | The binding of testosterone to an AR changes the shape of the AR. This AR molecule now enters the nucleus and stimulates gene expression.

Suggest how the AR could stimulate gene expression.
It can be a promoter protein that stimulates helps the binding of RNA polymerase to the DNA.
\qquad
\qquad
\qquad
\qquad

The gene that codes for the AR has a variable number of CAG repeats.
Some studies have shown an association between the number of CAG repeats and the risk of developing prostate cancer.

Table 1 shows the results of a statistical test from one study.
Table 1

Number of CAG repeats in the $\boldsymbol{A R}$ gene	Probability (P) value
<16	0.02
<17	0.30
<18	0.07
≤ 19	0.09
>20	0.06

| 0 | 2 |
| :--- | :--- | .4 What can you conclude from the data in Table 1?

With 16 or fewer there is a significant relationship. While with 17 or more there is no significant helationstip/association.
With 16 or less there is a less than 5% chance of the results being due to chance, so we can reject the null hypothesis. While for 17 or above we cant so must accept the nut t hypothesis.
\qquad
\qquad

Figure 2

A calorimeter can be used to determine the chemical energy store of biomass. A known mass of biomass is fully combusted in a calorimeter. The heat energy released from this combustion increases the temperature of the water in the calorimeter. The increase in the temperature of a known volume of water is recorded.

| 0 | 3 | 1 |
| :--- | :--- | :--- | Other than the thermometer, explain how two features of the calorimeter shown in Figure 2 would enable a valid measurement of the total heat energy released.

[2 marks]
1 Insulation minimises heat loss to surrounding.
\qquad

2 Stiver distributes heat evenly in the tor water.
\qquad
\qquad

Question 3 continues on the next page

| 0 | 3 |
| :--- | :--- |$. \begin{aligned} & \text { A } 2 \mathrm{~g} \text { sample of biomass was fully combusted in a calorimeter. }\end{aligned}$

The volume of water in the calorimeter was $100 \mathrm{~cm}^{3}$
The increase in temperature recorded was $15.7^{\circ} \mathrm{C}$
4.18 J of energy are needed to increase the temperature of $1 \mathrm{~cm}^{3}$ of water by $1^{\circ} \mathrm{C}$

Use this information to calculate the heat energy released in kJ per g of biomass.
Show your working.

$$
2 \mathrm{~g} \rightarrow 15.7^{\circ} \mathrm{C} \text { of } 100 \mathrm{cn}^{3}
$$

$$
\begin{aligned}
& 4.18 \mathrm{~J} / \mathrm{cm}^{3} / i \dot{c} \\
& 4.18 \times 15.7 \times 100=6562.6-f 02 \mathrm{~g} \\
& \text { for } 1 \mathrm{~g}=\frac{6562.6}{2}=3281.8 \mathrm{~J} / \mathrm{g} \\
&
\end{aligned}
$$

Answer \qquad 3.28 kJg^{-1}

Plants and algae produce fuels called biofuels. Scientists have used Chlorella to produce biofuel. Chlorella is a genus of single-celled photosynthetic alga.
Chlorella can be grown in open ponds and fermenters.

| 0 | 3 | 3 | In natural ecosystems, most of the light falling on producers is not used in |
| :--- | :--- | :--- | :--- | photosynthesis.

Suggest two reasons why.

1 \qquad
\qquad

2 Other factor like CO_{2} concentration or temperature arse the limiting factor of phetosyhthesis.
\qquad

| 0 | 3 | 4 |
| :--- | :--- | :--- | The light absorbed by chlorophyll is used in the light-dependent reaction.

Name the two products of the light-dependent reaction that are required for the light-independent reaction.

1 \qquad
2 \qquad

| 0 | 3 | 5 | Chlorella cells can divide rapidly. A culture of 2000 Chlorella cells was set up in a |
| :--- | :--- | :--- | :--- | fermenter. The cells divided every 90 minutes.

You can assume that there were no limiting factors and that no cells died during the 24 hours.

Calculate the number of cells in the culture after 24 hours.
Give your answer in standard form.
Show your working.

$$
1.5 h-2000 \times 2
$$

$$
\frac{24}{1.5}=16 \quad 2000 \times 2^{16}=131072000
$$

$$
1.3 \times 10^{8}
$$

Figure 3 shows the banding pattern of a single sarcomere.
Figure 3

| 0 | 4 | 1 |
| :--- | :--- | :--- | Light band is the band I made from only actin.

light grey is zone H made ep from only myosin

Darkest band is where adin and myosin overlap.
\qquad
\qquad
\qquad

Creatinine is produced in muscle tissues. Creatinine diffuses into the blood. The kidneys then excrete creatinine.

A calibration curve can be used to determine the concentration of creatinine in urine. One method of producing a calibration curve needs:

- creatinine solution of known concentration
- distilled water
- creatinine-detecting solution
- a colorimeter.

Creatinine-detecting solution reacts with creatinine to produce an orange colour.

| 0 | 4 |
| :--- | :--- | \square Use the information provided to describe how you could produce a calibration curve for creatinine.

Do not include details on the use of glassware in your answer.

Produce a serial dilution on creatinine Solution, with distilled water.
Add Gets creatinine defecting solution to each dilution. Making Sure each solution has the same volume only their concentration varies.
Adding the same amount of Creatinine detecting solution to each.
Use a colorimeter to measure the absorbance of each sample solution.
Plot dilution concentration against absorbance to create graph. Comecting points with smooth curve for calibration encore.
\qquad
\qquad
\qquad
\qquad
\qquad using your calibration curve.

Add same volume of creatinine detecting solution as used for the curve, to the same volume af urine sample as each sample was. Measme absorbance and read of from grap the value falling for concentration at the given absorbance.
\qquad

The nerve impulse preachers the synapse of hst netane, depolarising the presynapkic membrane. As calcium ions eater by calcium channels opening. on the synaptic knob.
The Ca^{2+} ions course synaptic vesicles to move towards and fuse with the pressnaptic membrane, releasing acetylcholine (neurotransmitter).
These released acetyl choice molecules diffuse across the synaptic cleft.
Receptors on the postsynaptic manbrane bind to the acetylchdine molecules Causing Na^{+} (sodiuna) ions to enter postsynaptic neurons. Thess leads to depolarisation and therefore the generation of a new nerve impulse.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	1

Give two other causes of genetic variation.
1 Random fertilisation

2 Crossing over
\qquad

In a species of flowering plant, the \mathbf{T} allele for tallness is dominant to the \mathbf{t} allele for dwarfness. In the same species, two alleles $\mathbf{C}^{\mathbf{R}}$ (red) and $\mathbf{C}^{\mathbf{W}}$ (white) code for the colour of flowers. When homozygous red-flowered plants were crossed with homozygous white-flowered plants, all the offspring had pink flowers.

0	6	2

Co-dominance
$\left.\begin{array}{l|l|l}0 & 6 & 3\end{array}\right]$ dwarf, pink-flowered plant was crossed with a heterozygous tall, white-flowered plant.

Complete the genetic diagram to show all the possible genotypes and the ratio of phenotypes expected in the offspring of this cross.

Phenotypes of parents: Dwarf, pink-flowered \times Tall, white-flowered
Genotypes of parents: \quad te $C^{R} C^{\omega} \quad$ It $C^{\omega} C^{\omega}$

$$
\begin{aligned}
& t \in C^{R} c^{w}=4 \\
& t \in C^{\omega} c^{\omega}=4 \\
& T \in C^{R} C^{\omega}=4 \\
& T \in C^{\omega} C^{\omega}=4
\end{aligned}
$$

Genotypes of offspring: \qquad $t t C^{k} C^{\omega}, t t C^{\omega} c^{\omega}, T+C^{k} C^{\omega}, T t C^{\omega} C^{\omega}$

Phenotypes of offspring: \qquad dwarf pint, dwarf white, tall pint, tall white
Ratio of phenotypes:

| 0 | 6 |
| :--- | :--- | :--- | A A population of this species of plant contained 9% of red-flowered plants.

Use the Hardy-Weinberg equation to calculate the percentage of pink-flowered plants in this population.

$$
\begin{aligned}
0.09 & =p^{2} \\
\Rightarrow p & =0.31 \\
a & =0.7 \\
1-0.09-0.49 & =2 p q \\
2 p q & =0.42 \\
& \Rightarrow 42 \%
\end{aligned}
$$

Answer \qquad \%

| 0 | $\mathbf{7}$ | A scientist investigated the effects of different fertilisers on the growth of |
| :--- | :--- | :--- | spinach plants. The scientist:

- set up a large sample of identical pots of soil
- added different masses of different fertilisers to selected pots
- did not add fertiliser to the control pots
- planted the same number of young spinach plants in each pot
- after 20 days, determined the biomass of spinach plants in each pot.

The results the scientist obtained after 20 days are shown in Figure 4.
Figure 4

Key
\leadsto Potassium nitrate
\longrightarrow Ammonium sulfate
Δ Chicken manure
-------- Control - no fertiliser added

0	7	1
Calculate how many times greater the mean growth rate per day was using		

Assume the mean biomass of the spinach plants at the start of the investigation was 0.5 g per pot.

$$
\begin{aligned}
\text { Potassium }=4.9 \cdot 0.5 \mathrm{~g} & =4.4 \mathrm{~g} \\
\text { Ammonime }=3.7-0.5 & =3.25 \\
\frac{4.4}{3.2} & =1375
\end{aligned}
$$

Answer \qquad 1.38

| 0 | 7. | 2 |
| :--- | :--- | :--- | Using all the information, evaluate the effect on plant growth of adding the different fertilisers to the soil.

Potassium nitrate is most effective, while chicken mareve is the least effective.
All are mare effective thought than pouts in control group.
No further advantage of potassium nitrate abcue $3 \mathrm{Cg}_{\mathrm{g}}$.
Chicken manures effectiveness decreases above 45 g .
However, no statistical test was preformed so cant know if differences are significant. The investigation is only done on spinach, bright have different outcome for different plants.
\qquad
\qquad
\qquad

| 0 | 7 |
| :--- | :--- | \square The scientist determined the dry mass of the spinach plants. First, he heated each sample at $80^{\circ} \mathrm{C}$ for 2 hours.

Suggest what the scientist should do to ensure that he has removed all the water from the sample.
[2 marks]
Weigh sample and then heat some more, then weigh again. Repeat till no further change to mass.
\qquad
\qquad

| 0 | $\mathbf{8}$ | Alpert syndrome (AS) is an inherited distr
 men and women. Affected individuals haver
 their urine). |
| :--- | :--- | :--- | :--- |

men and women. Affected individuals have proteinuria (high quantities of protein in their urine).

0	8	1	Suggest how AS could cause proteinuria.

Damages the proteins in basement membrane so that proteins are able to pass inte tubule hence get ceto urine at high concentration.

| 0 | 8 | 2 |
| :--- | :--- | :--- | AS results from a sex-linked mutation.

In a male with AS, where would the sex-linked mutation be located?
Tick (\checkmark) one box.

The homologous section of a Y chromosome

The homologous section of an X chromosome

The non-homologous section of a Y chromosome

The non-homologous section of an X chromosome

Scientists investigated the use of transplanted stem cells to treat AS in mice.
The scientists set up four experimental groups.
Group A-40 wild type* mice
Group B-40 AS mice
Group C-40 AS mice that received stem cells from AS mice
Group D-40 AS mice that received stem cells from wild type mice
*Wild type mice are mice not affected by AS.
After 20 weeks, the scientists measured the quantity of protein in the urine using a scale from 0 (lowest quantity) to +++++ (highest quantity).

The results the scientists obtained are shown in Table 2.
Table 2

Group	Maximum quantity of protein in urine at 20 weeks	Percentage of mice with this quantity of protein
A	0	100
B	+++++	97.5
C	+++++	100
D	++	68

0	8	3	3

Treatment D cloes have lower aunount of protein than other treatments so it could be effective, but not fully effective as wild type still has Less protein. Reduces.protern but not to the level of wild type.
We dont know abanit rest of the mice in group D outside of the 68%, some could be cered.
Also cont quantitively compare protein as we cont know exact quantity. Longer term effects beyond 20 weeks hay arise, which could be risky for humans.

Answer space for this question continues on the next page
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 8 | 4 |
| :--- | :--- | :--- | The scientists carried out further work to investigate how the transplanted stem cells developed after transplantation.

- The scientists transplanted stem cells from wild type male mice into AS female mice.
- After 20 weeks, they found that the quantity of protein in the urine of these female mice had significantly decreased.
- They examined cells from glomeruli in the female mice. Some of these cells contained a Y chromosome.

Suggest how the transplanted stem cells reduce proteinuria.
The stem cells sperialise/differeatiate into cells living the tubule but without damaged chamerts. So they reduce the loss of protein at the glomerous,
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 9 |
| :--- | :--- |\quad A scientist produced transgenic zebrafish.

She obtained a gene from silverside fish. The gene codes for a growth hormone (GH).

She inserted copies of this GH gene into plasmids. She then microinjected these recombinant plasmids into fertilised egg cells of zebrafish.

0	9	1

[2 marks]
Restriction endonuclease used to cut with a 'sticky end'.
Ligase enzyme used to join desired DNA fragment
cut with save restriction enzyme into plasmid, joining the sticky ends.

| 0 | 9 |
| :--- | :--- | 2

Microinjection of DNA into fertilised egg cells is a frequent method of producing transgenic fish. However, the insertion of the transferred gene into nuclear DNA may be delayed. Consequently, the offspring of transgenic fish may not possess the desired characteristic.

Suggest and explain how delayed insertion of the GH gene could produce offspring of transgenic fish without the desired characteristic.

Cell division occurs before DNA insertion, so
some daupther cells will not have desired genes replicated into then. Cells producing gametes do not recieve the gene.
\qquad
\qquad

The scientist investigated whether the transferred GH gene increased the growth of transgenic zebrafish. She microinjected 2000 fertilised egg cells with the GH plasmid and left 2000 fertilised egg cells untreated. After 12 months, she determined the mean mass of the transgenic and non-transgenic fish.

The results the scientist obtained are shown in Table 3.
Table 3
A value of $\pm 2 \times$ SD from the mean includes over 95% of the data.

Type of zebrafish	Mean mass of zebrafish $/ \mathbf{g}(\pm \mathbf{2 \times S D})$
Transgenic	$1.79(\pm 0.37)$
Non-transgenic	$0.68(\pm 0.13)$

| 0 | 9 | 3 |
| :--- | :--- | :--- | growth of zebrafish?

[2 marks]
Standard deviations dort overlap, so difference is significantly different. - There is a significant difference in the mean mass of the fish. (Transgenic is heavier)
\qquad
\qquad

| 0 | 9 | $\mathbf{4}$ Explain how two features of the design of this investigation helped to ensure the |
| :--- | :--- | :--- | validity of any conclusions obtained.

Do not include calculating the mean or SD in your answer.
1 Controll treatment used for Comparison.

2 Large sample size allows high level of Lepressutation for ate individuals.

1	0	$R e a d ~ t h e ~ f o l l o w i n g ~ p a s s a g e . ~$

North American black bears can hibernate for up to 7 months without food or water. The bears survive using the fat stores in their bodies. The bears build up the fat stores during the summer. During hibernation, the heart rate of black bears decreases from a summer mean of 55 beats per minute to 14 beats per minute. Their metabolic rate falls by 75%.

In many mammals, 'uncoupling proteins' help to maintain a constant body temperature during hibernation. Uncoupling proteins are found in the inner mitochondrial membrane and act as proton channels during chemosmosis. However, these proton channels do not generate ATP.

In the mountains of North America, when winter changes into spring, the coat colour of snowshoe hares changes from white to brown. Climatic changes have caused the snow to melt earlier. This has reduced the survival rate of snowshoe hares in these habitats. The change in coat colour occurs when new fur replaces old fur. This is called moulting. Recent research has shown that snowshoe hares within a population moult at different times. Moulting at different times could be a major factor in ensuring the survival of snowshoe hare populations.

Use the information in the passage and your own knowledge to answer the following questions.

| 1 | 0 | 1 |
| :--- | :--- | :--- | Black bears can hibernate for up to 7 months without food or water (lines 1-2).

Suggest and explain how.
[3 marks]
Fat storages can be used up to metabolise and respire on. However, as inactive less energy is needed anyway. The process of gluconeogenesis allows fatly acids to be converted to glucose and used in respiration. They can also lese less everest to respire dee to high fat insulation boeyping then warm. To conserve water then Mduce urination and use water from metabolic processes, such es from respiration.

1	0	2
2		

Use your knowledge of the nervous control of heart rate to describe how these are linked.
[4 marks]
Lower level of metabolism producess lower CO_{2} concentration in the block. Chemo receptors in the medulla register this and send less impulses front the cardiac centre. Fewer signal sent to SAN so heart rate slows as heart contracts less frequently.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10. \square 3 In many mammals, 'uncoupling proteins' help to maintain a constant body temperature during hibernation (lines 6-7).

Suggest and explain how.
They allow the movement of protons $\left(\mathrm{H}^{+}\right)$. from across the mitochondria membrane. Every is released as heat, not generating ATP..
\qquad
\qquad
\qquad

Question 10 continues on the next page

| 1 | 0 | 4 |
| :--- | :--- | :--- | (lines 11-13).

Suggest and explain how.
Do not write outside the

They rely on the snow at certain tones of the year to caroft camouflage them with their white far. If there is no snow due to climate change haves will still be white easily spotted by medators. So mae likely to fall as prey.

1	0	5
5	Snowshoe hares within a population moult at different times (line 15).	

Explain how this could ensure the survival of snowshoe hare populations in these mountain habitats.
[4 marks]
Hares that moult earlier ave having a survival advantage as less visible to predators. They
\qquad them a swivet ac reproductive saccess.
They then pass on their advantageous alleles ko the next generation in their offspring.
Over tithe and generations freiguency of advantageous allele increases in the the population
\qquad
\qquad
\qquad

