AQA

GCSE MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

November 2019

Version: 1.0 Final

19bg8300/3H/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copy right © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	0.26	B1	
2	$\frac{3}{2}$	B1	
3	-2x	B1	
		-	
4	6.365 ≤ <i>x</i> < 6.375	B1	

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	7x - 3x = 36 - 16		oe elimination of one va	riable	
		M1	implied by $4x = n$, where $n < 36$ and $n \neq 1$	16	
	4x = 20 or $x = 5$	A1	oe		
	<i>y</i> = 0.5	A1	oe		
	Alternative method 2				
	$7 \times 2y - 3 \times 2y = 7 \times 16 - 3 \times 36$		oe elimination of one va	riable	
	or $14y - 6y = 112 - 108$	M1	implied by $21x + 14y = 112$ and 21x + 6y = 108 followed by $8y = n$, where $n < 112$ and $n \neq 36$, 16 or 2		
	8y = 4 or $y = 0.5$	A1	oe		
	<i>x</i> = 5	A1			
E	Alternative method 3				
5	36 - 7x = 16 - 3x		oe elimination of one va	riable	
	or $\frac{36-2y}{7} = \frac{16-2y}{3}$	M1			
	4x = 20 or $x = 5$	A1	oe collects terms		
	or $8y = 4$ or $y = 0.5$		oe		
	x = 5 and $y = 0.5$	A1	oe		
	Additional Guidance				
	x = 5 and $y = 0.5$			M1A1A1	
	One correct value with one incorrect value (or no second value) and no working eg $x = 5$ and $y = 2$ or eg $x = 5$			M1A1A0	
	Embedded, correct values in both equations			M1A1A0	
	eg $7 \times 5 + 2 \times 0.5 = 36$ and $3 \times 5 + 36$	2 × 0.5 =	16		
	Embedded, correct values in one equation only			M1A0A0	
	eg $7 \times 5 + 2 \times 0.5 = 36$				

Question	Answer	Mark	Commer	nts
	3×18 or 54		oe	
	or			
	2 × 18 + 14 or 50			
	or			
	18+3×14 or 60	M1		
	or			
	4×14 or 56			
	or			
6(a)	1-0.25 or 0.75 seen			
0(a)	3 × 18 × (1 – 0.25)		oe	
	or 3×18×0.75 or 40.5			
	or	M1dep		
	18 × (1 – 0.25)			
	or 18×0.75 or 13.5(0)			
	40.50	A1	condone £40.50p	
	Additional Guidance			
	40.5 on answer line			M1M1A0

Question	Answer	Mark	Commer	nts	
	Should have multiplied 15 by 6		oe eg 15×6		
	or	B1	accept $\frac{240 \times 600}{100}$ or	144000	
	90		40×40	1600	
	Ado	ditional G	uidance		
	Ignore irrelevant statements alongsion	de a corre	ctanswer		
	15 × 6 seen but evaluated incorrectly	/		B1	
	Should have multiplied not added			B1	
	Should have multiplied at the end			B1	
6(b)	Adding was wrong			B1	
	He has added			B1	
	Times the number for length and width			B1	
	Times the length and width			B0	
	Calculation at the end is wrong			B0	
	Should have multiplied			B0	
	Needs to work out the area			B0	
	21 is wrong			B0	
	Answer is wrong		Answer is wrong		

Question	Answer	Mark	Comments
	Side of length [7.8, 8.2] cm drawn	B1	
	Correct construction with intersecting arcs, same radius as their base ± 2 mm to identify the third vertex		
7	or or or or correct construction with intersecting arcs, equal radii ± 2 m and construction with intersecting arcs, equal radii ± 2 m and construction arc drawn to correctly identify the third vertex	M1	or or
	Triangle with equal sides [7.8, 8.2], with correct construction seen	A1ft	ft B0M1 triangle with equal sides ± 2 mm, with correct construction seen
	Adc	litional G	Guidance
	No construction arcs drawn can scor	e a maxim	num of B1

Question	Answer	Mark	Comments			
	$\frac{2}{5} \times 35$ or $\frac{3}{8} \times 48$	M1	0e			
8(a)	14 or 18	A1				
	32	A1				
	Additional Guidance					
	Do not ignore further working after 3	2 seen				
	$\frac{32}{83}$ on answer line			M1A1A0		

	Alternative method 1			
	35 + 48 – their 32 or 35 – their 14 + 48 – their 18 or 51	M1	oe their 32 from (a) their 14 and their 18 from	m (a)
	51/83 or 0.61(4) or 61(.4)%	A1ft	ft their 32 from (a)	
	Alternative method 2			
8(b)	$\left(1-\frac{2}{5}\right) \times 35 + \left(1-\frac{3}{8}\right) \times 48$		oe	
	or $\frac{3}{5} \times 35 + \frac{5}{8} \times 48$	M1		
	or 21 + 30			
	51/83 or 0.61(4) or 61(.4)%	A1		
	Additional Guidance			
	Ignore incorrect conversion if correct fraction seen			
	If their answer in part (a) is a fraction, only allow follow through if their numerator is used in part (b)			
	Alt 1 ft decimal or percentage answe	rs accept	rounding to at least 2 sf	

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\frac{450}{65-35}$ or $\frac{450}{30}$ or 15	M1	oe		
	(360 – 65 – 35) × their 15 or 260 × their 15	M1dep	oe M2 <u>260</u> × 450 or 8.66 or 8.67 × 450	6() × 450	
	3900	A1			
	Alternative method 2				
9	$\frac{360}{65-35} \times 450$ or $\frac{360}{30} \times 450$ or 12×450 or 5400	M1	oe		
	$\frac{360 - 65 - 35}{360} \times \text{their 5400}$ or $\frac{260}{360} \times \text{their 5400}$	M1dep	oe eg 0.72() × their 5	5400	
	3900	A1			
	Additional Guidance				
	$260 \div 30 = 8.6$ and 8.6×450 fully correct working seen			M1M1A0	
10	÷ 8	B1			

Question	Answer	Mark	Commer	nts	
	8	B1			
	$\frac{1}{0.4} \text{ or } \frac{10}{4} \text{ or } 2.5$ or $\frac{1}{\frac{2}{5}}$ or $\frac{5}{2}$ or $2\frac{1}{2}$	M1	8 × 0.4 or 3.2 implies B 16 : 5 or equivalent rati	31M1 o implies B1M1	
	3.2:1 or $\frac{16}{5}$:1 or $3\frac{1}{5}$:1	A1ft	ft BOM1		
	Additional Guidance				
11	$8^3 = 512$ or $8 \times 8 \times 8 = 512$ alone is	s not suffic	cient for B1		
	ft answers must have <i>n</i> exact or correctly rounded to at least 2 sf eg $\sqrt{512}$ = 22.62 (incorrect and truncated) 2.5 9.05 : 1				
	ft answer exact surd value eg $\sqrt{512} = 16\sqrt{2}$ 2.5 9.05:1 or $\frac{32}{5}\sqrt{2}:1$			B0 M1 A1ft	

Question	Answer	Mark	Comment	ts
	Alternative method 1			
	Alternative method 1			
	280÷35 or 8	M1	oe eg 80÷10	
	(350 – 280) ÷ (40 – 35)		oe	
	or			
	70÷5	M1		
	or			
	14			
	6	A1		
	Alternative method 2			
	320		oe	
	or			
	350-320 or 30			
12	or	M1		
	350–280 and 320–280			
	or			
	70 and 40			
	(350 – 320) ÷ 5		oe	
	or			
	(70 – 40) ÷ 5	M1dep		
	or			
	30 ÷ 5			
	6	A1		
	Additional Guidance			
	Do not allow a misread from the grap	bh		
	Alt 2 40 must come from 320 – 280 a	and not 40	hours worked	

Question	Answer	Mark	Commer	nts	
13(a)	120 and 132 and 96 and 156 and states that 4 out of 5 would be above 100 or 8.3 and states that 4 out of 5 would be above 100 or $10.4 \times 12 = 124.8$ and states this is above 100 or the hypothesis is correct or median or mode = 10 and $10 \times 12 =$ 120 and states that median or mode is above 100 or $52 \times 12 (= 624)$ and $5 \times 100 (= 500)$ and states $624 > 500$	B2	B1 $10 \times 12 \text{ or } 120$ and $11 \times 12 \text{ or } 132$ and $8 \times 12 \text{ or } 96$ and $13 \times 12 \text{ or } 156$ or $100 \div 12 \text{ or } 8.3$ or states that 4 out of 5 wo with no or incorrect eval or $10.4 \times 12 = 124.8$ or median or mode = 10 ar or $52 \times 12 (= 624)$ and 5×10^{-1}	uld be above 100 luations nd 10 × 12 = 120 100 (= 500)	
	Additional Guidance				
	'4 out of 5' is implied by 'most people'				
	(10 + 11 + 8 + 10 + 13) ÷ 5 = 10.4			B0	
	52 × 12 or 624 alone			B0	
				-	
	Any two correct reasons from The sample is biased The sample is too small They may not read at the same rate in other months	B2	oe eg people in book clubs eg she should ask a lot i eg that month may not b B1	read more books more people pe representative	
13(b)			any one correct reason		
	Additional Guidance				

Additional Guidance	
Needs to use data from more months	B1
The results of just 5 people used	B1

Question	Answer	Mark	Comments	
	$y = x^3 + 2$ or $a = 2$	M1	implied by at least two correct points identified or plotted from $(-3, -25), (-2, -6), (-1, 1), (0, 2), (1, 3), (2, 10)$	
14	At least five correct points identified or plotted for their value of <i>a</i>	ed M1	correct points are (-3, -25), (-2, -6), (-1, 1), (0, 2), (1, 3), (2, 10) may be seen in a table or in working	
	Seven correct points plotted and joined with a smooth curve	A1	$\pm \frac{1}{2}$ square SC1 fully correct curve for $y = x^3$ for $-3 \le x \le 2$	
	Additional Guidance			

	37500×0.2 or 7500	M1	
	(9260 – their 7500) ÷ 0.4 or 1760 ÷ 0.4 or 4400	M1dep	
15	their 4400 + 37 500 + 12 500	M1dep	dep on M2
	54 400	A1	
	Additional Guidance		
	Trial and improvement for any part only scores if the correct value is found		

16(a)	2 × 14 × 9 × 8	M1	ое	
	2016	A1		
	Additional Guidance			
	$2016 \div 4 = 504$ penalise further working after 2016 seen			M1A0
	2 × 14 × 9 × 8 × 4 with 2016 not seen			MOAO
	2 × 14 × 9 × 8 ÷ 4 with 2016 not seen			M0A0

Question	Answer	Mark	Commer	nts	
	$(1 \times) 14 \times 0 \times 6$	M1			
	(1 x) 14 x 9 x 0		0e		
	756	A1			
16(h)	Additional Guidance				
10(0)	$756 \div 4 = 189$ penalise further working after 756 seen			M1A0	
	756 × 4 = 3024	M1A0			
	$14 \times 9 \times 6 \div 4$ with 756 not seen			M0A0	

17	$(f(10) =) 3 \times 10^{2} - 4 \times 10 + 8$ or $(f(10) =) 300 - 40 + 8$ or $(f(10) =) 268$ or $(f(5) =) 3 \times 5^{2} - 4 \times 5 + 8$ or $(f(5) =) 75 - 20 + 8$ or $(f(5) =) 63$ or $(2f(5) =) 2 \times 63$ or 126	M1	
	268 and 126 and No	A1	
	Additional Guidance		

Question	Answer	Mark	Comme	ents	
	$\tan DBH = \frac{8}{13}$	M1	oe tan ⁻¹		
	31.6	A1			
10(0)	Additional Guidance				
19(a)	31.6 in working, 32 on answer line	M1A1			
	31.6 in working, 31 on answer line	M1A0			
	$\tan \frac{8}{13} \text{ or } \tan = \frac{8}{13}$			MOAO	

	58.39 or 58.4	B1ft	ft 90 – their 31.6	
19(b)	Additional Guidance			
	Correct or follow through			

20	$\sqrt{2}$	B1	

Question	Answer	Mark	Comments		
	Alternative method 1				
	1125÷5×2 or 450	M1	oe		
	their 450 ÷ 6 × (7 ÷ 4) or 75 × 1.75 or 131.25	M1dep			
	1125 ÷ their 131.25	M1dep			
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1			
	Alternative method 2				
	5÷2 or 2.5		oe		
	and	M1			
	7÷4 or 1.75				
21	their 2.5 ÷ their 1.75 or 1.42857 or $\frac{10}{7}$	M1dep	oe		
	6 × their 1.42857	M1dep			
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1			
	Alternative method 3				
	(Small bottle fills) $6 \times \frac{4}{7}$ or $\frac{24}{7}$	M1			
	(Large bottle fills) their $\frac{24}{7} \times \frac{5}{2}$	M1dep			
	or $\frac{1-2}{14}$				
	their 120 ÷ their 14	M1dep			
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1			

Mark scheme for Question 21 continues on next page

Question	Answer	Mark	Comments	
	Alternative method 4			
	Any two of $b_1 = 6g_1$ and $b_2 = 2.5b_1$ and $g_2 = 1.75g_1$	M1	oe any letters for small bottle (b_1) , small glass (g_1) , large bottle (b_2) and large glass (g_2)	
	$b_2 = 2.5 \times 6g_1$ or $b_2 = 15g_1$	M1dep	ое	
21 cont	$b_2 = \text{their } 15\left(\frac{g_2}{1.75}\right)$	M1dep		
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1		
	Additional Guidance			
	If the student attempts more than on method and award the highest mark	, mark each		
	Correct answer seen in working, 9 on answer line		ine M1M1M1A0	

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$(x-5)^2$ or $(5-x)^2$ or $x^2 - 10x + 25 (= 0)$ or b = -10 or a = 25	M1			
	b = -10 and $c = 25$	A1			
22	Alternative method 2 – using $b^2 - 4$	1 <i>ac</i>			
22	$b^{2} - 4 (x 1) x c = 0$ or $b^{2} - 4 (x 1) x (-25 - 5b) = 0$ or $b^{2} + 100 + 20b = 0$ or $(b + 10)^{2} = 0$	M1			
	b = -10 and $c = 25$	A1			
	Additional Guidance				
	Do not allow $c = 25$ from $(x + 5)^2$ or $(5 + x)^2$				

Question	Answer	Mark	Comments
		1	
23	$\frac{3}{8}$	B1	

	Enlargement	B1		
	Scale factor (x) $-\frac{1}{2}$	B1	oe	
	Centre (1, -1)	B1		
	Ado			
24	Enlarge (×) − <mark>1</mark> (1, −1)	B1B1B1		
	'Reduces' or 'gets smaller' or 'shrinks	1st B0		
	Do not accept $\div \left(-\frac{1}{2}\right)$ for scale factor	2nd B0		
	Centre 1, -1	3rd B0		
	Combined transformation given			B0B0B0

Question	Answer	Mark	Comments
	Alternative method 1		
	viable distance, eg		
	$\frac{1}{2} \times \frac{5}{60} \times 102$ or 4.25		first section
	or		
	$102 \times \frac{40}{60}$ or 68		second section
	or	M1	
	$\frac{1}{2}(102+96) \times \frac{15}{60}$ or $96 \times \frac{15}{60}$		third section
	and $\frac{1}{2} \times 6 \times \frac{15}{60}$ or 24 and 0.75		
	or 24.75		
	Or		for the state of t
25	$\frac{1}{2}\left(\frac{40}{60} + \frac{45}{60}\right) \times 102 \text{ or } 72.25$		first and second sections
	Correct method to work out all parts of distance, eg		97 scores M1M1
	$\frac{1}{2} \times \frac{5}{60} \times 102$ or 4.25		
	and	M1den	
	$102 \times \frac{40}{60}$ or 68	witdep	
	and		
	$\frac{1}{2}(102+96) \times \frac{15}{60}$ or 24.75		
	130 – their whole distance		eg
	or 130–97	M1dep	130 – their 4.25 – their 68 – their 24.75
			dep on M2
	33	A1	

Mark scheme for Question 25 continues on the next page

Question	Answer	Mark	Commer	nts
	Alternative method 2			
	Correct method to work out 60 × any viable distance, eg			
	$\frac{1}{2} \times 5 \times 102$ or 255		first section	
	or			
	102 × 40 or 4080		second section	
	or			
	$\frac{1}{2}(102+96) \times 15$ or 96×15 and	M1	third section	
	$\frac{1}{2} \times 6 \times 15$ or 1440 and 45 or			
	1485			
	or			
	$\frac{1}{2}(40 + 45) \times 102$ or 4335		first and second section	S
25 cont	Correct method to work out 60 × all parts of distance, eg		5820 implies M1M1	
	$\frac{1}{2} \times 5 \times 102$ or 255			
	and	M1dep		
	102 × 40 or 4080			
	and			
	$\frac{1}{2}(102+96) \times 15$ or 1485			
	130 – their whole distance		eg	
	or $130 - \frac{5820}{60}$	M1dep	130 – <u>their 255 + their 4</u> 60	080 + their 1485)
	or 130–97		dep on M2	
	33	A1		
	Additional Guidance			
	Accept fractions used as decimals correct to 2 dp or better			

 $\sqrt{\text{their 86.976...}}$

MARK SCHEME - GCSE MATHEMATICS - 8300/3H - NOVEMBER 2019

Question	Answer	Mark	Comments		
	$\frac{1}{2} \times 9.7 \times 3.8 \times \sin 73^{\circ}$ or 17.6	M1	oe		
	their 17.6 × 6 ÷ 8.5 or 105.7 ÷ 8.5 or 12.4	M1dep	oe		
26(a)	13	A1			
	Ado	litional G	uidance		
	$\frac{1}{2} \times 9.7 \times 3.8 = 18.43 18.43 \times 6 \div 8.5 = 13.0$			MOMOAO	
	$9.7^2 + 3.8^2 - 2 \times 9.7 \times 3.8 \times \cos 73^\circ$ or $94.09 + 14.44 - 73.72 \cos 73^\circ$ or 86.976 or 86.98 or 87	M1	oe		
	$\sqrt{\text{their 86.976}}$	M1dep			
	9.3(2) or 9.33	A1			
26(b)	$\frac{\sin x}{\text{their } 9.32} = \frac{\sin 42}{8}$ or sin ⁻¹ [0.7778, 0.7804]	M1	oe their 9.32 must be th vertical line	eir length of the	
	[51, 51.3]	A1ft	ft their 9.3(2) or 9.33	3	
	Additional Guidance				
	Their 9.32 must come from M1M1 or be clearly identified in working or on the diagram as the length of the vertical line				

Question	Answer	Mark	Comments
	(<i>P</i> Q =) a + b + c	M1	ое
	$(XY =) \frac{2}{3} \mathbf{a} + \mathbf{b} + \frac{2}{3} \mathbf{c}$		
	or	M1	
	$(XY =) -\frac{1}{3}a + a + b + c - \frac{1}{3}c$		
07	(<i>P</i> Q =) a + b + c		oe
21	and		
	$(XY=) \frac{2}{3}a + b + \frac{2}{3}c$	A1	
	and		
	No, as XY is not a multiple of PQ		
	Additional Guidance		

Question	Answer	Mark	Commer	nts
28	$\frac{y+3}{2} = x$ or x = 2y - 3 and x + 3 = 2y or 2x - 3 = 55	M1		
	$\frac{x+3}{2}$ or $\frac{55+3}{2}$	A1		
	$2x^2 - 3$ or $2 \times 4^2 - 3$ or $2 \times 16 - 3$	M1		
	$\frac{55+3}{2} = 29$ and $2 \times 4^2 - 3 = 29$ or $2 \times 16 - 3 = 29$	A1		
	Additional Guidance			
	29 with no working or only from incorrect working		M0A0M0A0	