GCSE
 MATHEMATICS
 8300/2H

Higher Tier Paper 2 Calculator
Mark scheme
November 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	$12 x^{3}+20 x^{2}$	B 1		
	Additional Guidance			

| $\mathbf{2}$ | 10^{6} | B 1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

3	$\frac{2}{3}$	B1		
	Additional Guidance			

4	$y=\frac{1}{x}$	B 1		
	Additional Guidance			

Question	Answer	Mark	Comments

5	720	B2	B1 at least 3 multiples of $120(>120)$ and at least 3 multiples of 144 (>144) eg 240360480 and 288432576 or $(120=) 2 \times 2 \times 2 \times 3 \times 5$ or $(144=) 2 \times 2 \times 2 \times 2 \times 3 \times 3$ or (Answer $=$) $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$ or (Answer $=$) $2^{4} \times 3^{2} \times 5$ or (Answer =) any multiple of 720 (> 720) eg 1440 or 17280	
	Additional Guidance			
	Prime factor responses for B1 may be in index form eg ($120=) 3 \times 5 \times 2^{3}$			B1
	Prime factor responses for B1 may be seen on a factor tree or a Venn diagram or in repeated division eg1 22235 on a factor tree for 120 eg2 222233 inside one circle on a Venn diagram			$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
	For B1 allow some incorrect multiples if 3 correct of each eg1 $240 \quad 380 \quad 480 \quad 720 \quad 900$ (3 correct) and $288432576 \quad 868$ (3 correct) eg2 Answer 1440 but some incorrect multiples seen			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	Any multiple of $720(>720)$ given in unsimplified form eg1 $2^{7} \times 3^{3} \times 5$ eg $2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 3 \times 3$			$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
	B1 can still be awarded even if subsequently works out HCF			
	Answer 720 with some incorrect multiples seen			B2
	For products of prime factors, ignore inclusion of $\times 1$			

Question	Answer	Mark	Comments

$\mathbf{*}$ 6(a)	Positive	B1	accept +ve or +
	Additional Guidance		
	Ignore any reference to the strength of the correlation	B1	
	As one jump increases so does the other so positive	B0	
	As one jump increases so does the other		

6(b)	Straight line of best fit passing through $\begin{aligned} & (150,[504,512]) \\ & \text { and } \\ & (180,[550,558]) \end{aligned}$	B1	accept if clear intentio line ignore anything either	wa a straight the gates
	Correct reading $\pm \frac{1}{2}$ square for their straight line of best fit	B1ft	ft straight line with pos accept if clear intention line ignore any working line	adient aw a straight heir graph
	Additional Guidance			
	No line of best fit			B0B0ft
	Short straight line with positive gradient and correct reading $\pm \frac{1}{2}$ square for their line			B0B1ft
	Two lines of best fit, mark the line that leads to their answer			
	Two lines of best fit, no answer, apply the usual rules of choice			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

7	Alternative method 1		
	$110 \div 2 \text { or } 55$ or $2 \div 110$ or $0.018(1 \ldots)$ or 0.0182 or $44 \div 110$ or 0.4 or $110 \div 44$ or 2.5	M1	oe
	$44 \div(110 \div 2) \text { or } 0.8 \text { or } \frac{4}{5}$	M1dep	oe eg 2880 or calculation that would evaluate to 0.8 $\text { eg } 2 \div 110 \times 44$ or $44 \div 110 \times 2$ or $2 \div(110 \div 44)$ or $\frac{110+44}{110 \div 2}-2 \text { or } 2.8-2$
	48	A1	
	Alternative method 2		
	$110 \div 2 \div 60$ or $0.916 \ldots$ or 0.917 or 0.92 or $2 \times 60 \div 110$ or $1.09(0 \ldots$) or 1.091	M1	oe
	$44 \div(110 \div 2 \div 60)$	M1dep	oe calculation that would evaluate to 48 eg $44 \times 2 \times 60 \div 110$
	48	A1	

Additional Guidance is on the next page

Question	Answer	Mark	Comments

7 cont	Additional Guidance	
	Ignore units for M marks eg 55 miles	M1
	Do not award A1 if premature approximation for 48 seen eg (Alt 1) $0.018 \times 44=0.8 \quad$ Answer 48 (Alt 1) $0.018 \times 44=0.792$ and $0.792 \times 60=47.52$ Answer 48 (Alt 2) $44 \div 0.917=48$ (Alt 2) $44 \div 0.917=47.9 \quad$ Answer 48 (Alt 2) $44 \times 1.09=48$ (Alt 2) $44 \times 1.09=47.96 \quad$ Answer 48	M2A1 M2AO M2A1 M2A0 M2A1 M2AO
	48 followed by answer 2 h 48 min	M2A0
	48 followed by answer 168 min	M2A0
	Allow M1 even if not subsequently used	
	Alt 1 Working in seconds leading to 2880	M2

Question	Answer	Mark	Comments

9	$\frac{180-56}{2}$ or 62	M1	oe may be on	
	$180+$ their 62 or 360 - 56 - their 62	M1dep	oe $\text { eg } 62+62$	
	242	A1		
	Additional Guidance			
	62 seen even if not sub			M1
	Answer (0)62			M1M0A0
	56 only			M0
	242 seen but answer g			M1M0A0
	242 seen but then furth	- 242	d answer 118	M1M0A0

Question	Answer	Mark	Comments

Additional Guidance is on the next page

Question	Answer	Mark	Comments

10 cont	Additional Guidance	
	Term to term rule described eg Add on 4 each time	M1
	$a+5 d=21, a+4 d=17$ only	M0
	Difference shown as 4 then eg $n+4$	M1
	Only eg $n+4$ or $3 n+4$	M0
	$4 n-3$ seen even if not subsequently used	M1A1
	$4 n$ seen eg $4 n+13$ even if not subsequently used	M1
	Correct list going up in 4s stopping at 397	M1M1A1
	List going up in 4 s with an error or not reaching 397	M1M0A0
	$\begin{array}{lll}\text { No subtraction seen and incorrect difference eg } & 17 & 21 \\ & +3\end{array}$	M0
	Alt 2 allow $n 4$	M1
	$4 n-3=100$	M1A1A0
	Allow M1 even if not subsequently used	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

12	Alternative method 1			
	$15^{2} \text { or } 225$ and $(16 \div 2)^{2}$ or 8^{2} or 64	M1	oe	
	$\begin{aligned} & \sqrt{15^{2}+(16 \div 2)^{2}} \\ & \text { or } \sqrt{\text { their } 225+\text { their } 64} \\ & \text { or } \sqrt{289} \text { or } 17 \end{aligned}$	M1dep	oe full trigonometric method leading to 17 scores M2 $\text { eg } \frac{15}{\sin \left(\tan ^{-1} \frac{15}{8}\right)}$	
	$6 \times$ their $17+3 \times 16$ or $102+48$	M1dep	oe	
	150	A1	SC2 $48+6 \sqrt{161}$ or [124.08, 124.2]	
	Alternative method 2			
	$(48 \div 2)^{2}$ or 24^{2} or 576 and $(15 \times 3)^{2}$ or 45^{2} or 2025	M1	oe eg $(16 \times 1.5)^{2}$ and $(3 \times 15)^{2}$	
	$\begin{aligned} & \sqrt{(48 \div 2)^{2}+(3 \times 15)^{2}} \\ & \text { or } \sqrt{\text { their } 576+\text { their } 2025} \\ & \text { or } \sqrt{2601} \text { or } 51 \end{aligned}$	M1dep	oe full trigonometric method leading to 51 scores M2 eg $\frac{45}{\sin \left(\tan ^{-1} \frac{15}{8}\right)}$ or $\frac{45}{\sin \left(\tan ^{-1} \frac{45}{24}\right)}$	
	$2 \times$ their $51+3 \times 16$ or $102+48$	M1dep	oe	
	150	A1	SC2 $48+6 \sqrt{161}$ or [124.08, 124.2]	
	Additional Guidance			
	$15^{2}-8^{2}$ or $45^{2}-24^{2}$			M1M0M0A0 (unless SC2 scored)
	Allow $61.9(2 \ldots)$ or 61.93 or 62 for $\tan ^{-1} \frac{15}{8}$ but do not award A1 if premature approximation seen			

Question	Answer	Mark	Comments

13(a)	$15 \times 24 \text { or } 360$ and $40 \times 76 \text { or } 3040$ and 55×52 or 2860 and 75×48 or 3600 or 9860	M1	allow one incorrect midpoint	
	```(their \(360+\) their \(3040+\) their 2860 + their 3600) \(\div 200\) or \(9860 \div 200\)```	M1dep	condone bracket error seen eg $360+3040+2860+3600 \div 200$	
	49.3	A1	accept 49 if full working shown using correct midpoints	
	Additional Guidance			
	Four values or products with three correct from 360, 3040, 2860 and 3600 implies the first mark and could be used to score up to M2			
	Correct products seen in the table or working but a different method shown in the working lines eg $200 \div 4$			M0
	Ignore attempts to convert to minutes and seconds after 49.3 seen eg 49 min 18 s or 49 min 30 s			
	49.3 in working with answer $30 \leqslant t<50$			M2A0


Question	Answer	Mark	Comments


13(b)	$24 \div 30 \text { or } 0.8$   or $76 \div 20 \text { or } 3.8$   or   $52 \div 10$ or 5.2   or   $48 \div 30$ or 1.6   or   four frequency densities in correct proportion	M1	implied by a correct bar   eg 8 and 38 and 52 and 1
	At least three of 0.8 and 3.8 and 5.2 and 1.6	M1dep	implied by at least three b proportion
	At least 3 bars in correct proportion with matching scale on vertical axis or   at least 3 bars in correct proportion with a matching key	M1dep	
	Fully correct histogram with scale on vertical axis or a key	A1	$\pm \frac{1}{2}$ small square ignore frequency polygon
	Additional Guidance		
	Allow up to M2 even if not subsequently used		
	Correct bars must have correct widths		


Question	Answer	Mark	Comments


14(a)	$\frac{1}{2}(13+10) \times 12 \text { or } 138$   or $\frac{1}{2} \times 10 \times 8 \text { or } 40$	M1	oe
	$\frac{1}{2}(13+10) \times 12 \text { or } 138$   and $\frac{1}{2} \times 10 \times 8 \text { or } 40$   or $178$	M1dep	oe
	$25 \div$ (their $138+$ their 40)	M1dep	oe
	0.14(0...)	A1	
	Additional Guidance		


Question	Answer	Mark	Comments


14(b)	less than   and   valid reason	B2	eg less than and you should be dividing by a bigger number   or less than and the (actual) area is bigger   B1 less than	
	Additional Guidance			
	If no box is ticked, condone if less than is clearly stated in working lines			
	Wrong box or > 1 box ticked			B0
	less than and he has not included all the base			B2
	less than and it doesn't cover 100\% of the base			B2
	less than and it doesn't include the parts outside the areas			B2
	less than and the area is an underestimate			B2
	less than and it is an underestimate			B1
	less than and it is only an estimate			B1
	less than and the answer to (a) is not the exact area			B1


15	$w=\sqrt[3]{y^{2}}$	B 1		
	Additional Guidance			


Question	Answer	Mark	Comments


16(a)	$\frac{a}{100} \times b=\frac{b}{100} \times a$	B1	oe eg both are equal to $\frac{a b}{100}$	
	Additional Guidance			
	$a b=b a$			B0
	Only numerical example(s)			B0


16(b)	No and valid reason	B1	eg No and it should be ( $160 \%$ of $40=$ ) $40 \%$ of 160   or   No and it should be 60\% of 140 $\text { (= }=140 \% \text { of } 60)$   or   No and $160 \neq 60$   or   No and $40 \neq 140$   or   No and 64 and 84	
	Additional Guidance			
	If neither box is ticked condone if No is clearly stated in working lines			
	Yes or both boxes ticked			B0
	No and the as aren't the same			B1
	No and the $b s$ aren't the same			B1
	No and 160 \# 140			B0
	No and $40 \neq 60$			B0
	No and $a$ values change from 160 to 140			B0
	No and $b$ values change from 40 to 60			B0
	No and 96 and 84			B0
	No and they give different answers			B0


Question	Answer	Mark	Comments


$\mathbf{1 7 ( a )}$	12	B2B1 $(1-0.85) \times 80$ or $0.15 \times 80$   or $0.85 \times 80$ or 68		
	Additional Guidance			B1
	For B1 allow oe calculations eg $17 \times 4$			



Question	Answer	Mark	Comments


18(a)	Alternative method 1 large rectangle - 4 squares		
	$x(x+5)$	M1	
	$x^{2}+5 x-400=1000$   or $x^{2}+5 x-400-1000=0$   or $x^{2}+5 x=1000+400$   with M1 seen	M1dep	400 may be seen as $4 \times 10^{2}$ or $4 \times 100$ oe equation with brackets expanded and 400 and 1000 seen
	$x^{2}+5 x-1400=0$ with M2 seen	A1	must have $=0$
	Alternative method 2 three vertical rectangles		
	$(x+5)(x-20)$ or (2×)10(x-15)	M1	$(x-20)$ may be seen as $(x-10-10)$   $(x-15)$ may be seen as $(x+5-10-10)$
	$\begin{aligned} & x^{2}-20 x+5 x-100+20 x-300 \\ & =1000 \end{aligned}$   or $x^{2}-15 x-100+20 x-300=1000$   with M1 seen	M1dep	oe equation with brackets expanded and 100 and 300 and 1000 seen allow 150 seen twice for 300
	$x^{2}+5 x-1400=0$ with M2 seen	A1	must have $=0$

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments


18(a) cont	Alternative method 3 three horizontal rectangles			
	$x(x-15)$ or $(2 \times) 10(x-20)$	M1	$(x-20)$ may be seen as $(x-10-10)$   $(x-15)$ may be seen as $(x+5-10-10)$	
	$x^{2}-15 x+20 x-400=1000$   with M1 seen	M1dep	oe equation with brackets expanded and 400 and 1000 seen   allow 200 seen twice for 400	
	$x^{2}+5 x-1400=0$ with M2 seen	A1	must have $=0$	
	Alternative method 4 central rectangle + four outer rectangles			
	$\begin{aligned} & (x-15)(x-20) \text { or }(2 \times) 10(x-15) \\ & \text { or }(2 \times) 10(x-20) \end{aligned}$	M1	$(x-20)$ may be seen as $(x-10-10)$   $(x-15)$ may be seen as $(x+5-10-10)$	
	$\begin{aligned} & x^{2}-20 x-15 x+300+20 x-300+ \\ & 20 x-400=1000 \end{aligned}$   or $\begin{aligned} & x^{2}-35 x+300+20 x-300+20 x \\ & -400=1000 \end{aligned}$   with M1 seen	M1dep	oe equation with brackets expanded and 300 seen twice and 400 and 1000 seen allow 150 seen twice for one of the 300s allow 200 seen twice for 400	
	$x^{2}+5 x-1400=0$ with M2 seen	A1	must have $=0$	
	Additional Guidance			
	If 1st M1 seen award M1 even if expression is not subsequently used			
	For M1 allow multiplication signs eg $x \times(x+5)$			M1
	$\begin{aligned} & x(x+5)=x^{2}+5 x \\ & 1000+400=1400 \end{aligned}$   $x^{2}+5 x=1400$ (previous line shows 1000 and 400) $x^{2}+5 x-1400=0$			M1   M1   A1
	$\begin{aligned} & x(x+5)=x^{2}+5 x \\ & \left.x^{2}+5 x=1400 \quad \text { (equation does not have } 1000 \text { and } 400\right) \\ & x^{2}+5 x-1400=0 \end{aligned}$			$\begin{aligned} & \text { M1 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	Only equation seen is $x^{2}+5 x-1400=0$ the maximum mark is M1			


Question	Answer	Mark	Comments


18(b)	No and valid reason	B1	eg No and $x$ cannot context)	e (in this
	Additional Guidance			
	If neither box is ticked condone if No is clearly stated in working lines			
	Yes or both boxes ticked			B0
	Allow 'it' to represent $x$			
	No and $x$ is (only) 35			B1
	No and it cannot be -40			B1
	No and the width would be negative			B1
	No and the width should be positive			B1
	No she put -40			B1
	No and you can't have two answers			B0
	No and the answers are too big			B0
	No and it should be 40 (and -35)			B0


| 19 | periodic | B1 |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |
|  |  |  |  |


$\mathbf{2 0}$	$(7,30)$	B1		
	Additional Guidance			


Question	Answer	Mark	Comments


21	Alternative method 1			
	$n-1$ and $n$ and $n+1$	M1	oe eg $(n-1) n(n+1)$ or $n(n-1)(n+1)$	
	$n\left(n^{2}+n-n-1\right)$ with M1 seen or $n\left(n^{2}-1\right)$ with M1 seen or $\left(n^{2}-n\right)(n+1)$ with M1 seen or $\left(n^{2}+n\right)(n-1)$ with M1 seen	M1dep		
	$n^{3}-n^{2}+n^{2}-n+n$ with M2 seen or $n^{3}-n+n$ with M2 seen	M1dep		
	$n^{3}$ with M3 seen	A1		
	Alternative method 2			
	$x$ and $x+1$ and $x+2$	M1	oe eg $x(x+1)(x+2)$	1) $x(x+2)$
	$\left(x^{2}+x\right)(x+2)$ with M1 seen or $\left(x^{2}+2 x\right)(x+1)$ with M1 seen or $x\left(x^{2}+2 x+x+2\right)$ with M1 seen or $x\left(x^{2}+3 x+2\right)$ with M1 seen	M1dep		
	$x^{3}+3 x^{2}+2 x+x+1$ with M2 seen or $x^{3}+x^{2}+2 x^{2}+2 x+x+1$ with M2 seen	M1dep		
	$x^{3}+3 x^{2}+3 x+1$   and $(x+1)^{3}$ with M3 seen	A1	allow $x^{3}+3 x^{2}+3 x+1$   and   $n^{3}$ with M3 seen if $n=$	stated
		ditional	idance	
	Only numerical example(s)			Zero
	Condone use of any letter eg $N$			


Question	Answer	Mark	Comments


$\mathbf{2 2}$	The gradient of the chord from $A$ to   $B$	B1		
	Additional Guidance			



Question	Answer	Mark	Comments


23(b)	Alternative method 1			
	$\begin{aligned} & \sqrt[3]{\frac{125}{8}} \text { or } \frac{5}{2} \\ & \text { or } \sqrt[3]{\frac{8}{125}} \text { or } \frac{2}{5} \end{aligned}$	M1	oe eg $\sqrt[3]{15.625}$ or 2.5 or $\sqrt[3]{0.064}$ or 0.4	
	$\begin{aligned} & 5 \times \sqrt[3]{\frac{125}{8}} \\ & \text { or } 5 \div \sqrt[3]{\frac{8}{125}} \end{aligned}$	M1dep	oe	
	12.5 or $12 \frac{1}{2}$ or $\frac{25}{2}$	A1		
	Alternative method 2			
	$\begin{aligned} & 5 \times 3 \times 2 \times \frac{125}{8} \\ & \text { or } 468.75 \end{aligned}$	M1	$\begin{aligned} & \text { oe eg } 5 \times 3 \times 2 \times 15.625 \\ & \text { or } 30 \times \frac{125}{8} \end{aligned}$	
	$x \times \frac{3 x}{5} \times \frac{2 x}{5}=$ their 468.75	M1dep	$\text { oe eg } \frac{6}{25} x^{3}=\text { their } 468.75$	
	12.5 or $12 \frac{1}{2}$ or $\frac{25}{2}$	A1		
	Additional Guidance			
	$\sqrt{\frac{125}{8}}$ or $\sqrt{\frac{8}{125}}$			MOMOAO
	$x \times \frac{x}{\frac{5}{3}} \times \frac{x}{\frac{5}{2}}=\text { their } 468.75$			M1M1
	Allow 1.66 or 1.67 for $\frac{5}{3}$ $\text { eg } x \times \frac{x}{1.66} \times \frac{x}{2.5}=\text { their } 468.75$			M1M1


Question	Answer	Mark	Comments


24	Alternative method 1			
	-2 used for value of $x$	M1		
	-2 used for value of $x$ and 13 used for value of $y$	M1dep		
	15	A1		
	Alternative method 2			
	-2 used for $x$ value	M1		
	$11-2 \times-2$	M1dep	oe	
	15	A1		
	Additional Guidance			
	Answer only of 13			MOMOAO
	Answer only of -2			MOMOAO
	13 used for value of $y-x$ does not score 2nd M1			


Question	Answer	Mark	Comments


	$C E D=4 x$   or $A C B=180-y-(90-x)$	M1	may be on diagram
25	$\begin{aligned} & C E D=4 x \\ & \text { and } D C E=\frac{180-4 x}{2} \\ & \text { or } \\ & A C B=180-y-(90-x) \\ & \text { and } D C E=180-y-(90-x) \end{aligned}$	M1dep	may be on diagram   allow $D C E=A C B$ for $D C E=180-y-(90-x)$
	M2 seen and $y+90-x+\frac{180-4 x}{2}=180$   and $y=3 x$   or   M2 seen   and $\frac{180-4 x}{2}=180-y-(90-x)$   and $y=3 x$	A1	M2 seen   and $2(180-y-(90-x))+4 x=180$   and $y=3 x$
	M2A1 seen   and   all reasons given	A1	```eg alt(ernate) seg(ment theorem) and (base angles of) isos(celes) triangle (are equal) and (vertically) opp(osite) angles (are equal) and angles in a triangle (sum to 180}\mp@subsup{}{}{\circ}\mathrm{ )```

Additional Guidance is on the next page

Question	Answer	Mark	Comments


25 cont	Additional Guidance	
	Allow $C E=D E$ for the reason (base angles of) isos(celes) triangle (are equal)	
	Allow $90-y+x$ or $180-y-90+x$ for $180-y-(90-x)$	
	Allow $90-2 x$ for $\frac{180-4 x}{2}$	
	Allow clear indication of angles   eg   allow $E$ for $C E D$   do not allow $C$ for $A C B$ unless seen on diagram	
	Assuming $y=3 x$	Zero
	For 1st A1, allow equivalent equations eg For $2(180-y-(90-x))+4 x=180$ allow $2(180-y-(90-x))=180-4 x$	


Question	Answer	Mark	Comments



## Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments


26 cont	Alternative method 2			
	$P=\frac{k}{R^{2}} \text { or } 1.25=\frac{k}{6^{2}}$	M1	oe	
	$k=1.25 \times 6^{2}$	M1dep	oe	
	$P=\frac{45}{R^{2}}$   or $k=45$	A1	oe	
	$0.8=\frac{\text { their } 45}{R^{2}}$   or $(R=) \sqrt{\frac{\text { their } 45}{0.8}}$	M1	oe ft their equation of the form $P=\frac{k}{R^{2}}$	
	$7.5 \text { or } 7 \frac{1}{2} \text { or } \frac{15}{2}$	A1ft	ft their equation of the form $P=\frac{k}{R^{2}}$ with 3rd M1 scored	
	Additional Guidance			
	Allow $k$ and $c$ to be any letters, including using both as $k$ in Alt 1			
	Alt $1 k P=Q^{2}$ leading to $k=0.2$			M1M1
	Alt $2 k P=\frac{1}{R^{2}}$ leading to $k=\frac{1}{45}$ (allow $0.022 \ldots$ )			M1M1A1


Question	Answer	Mark	Comments


27	$\sqrt[3]{13}$ or $2.35(1 \ldots)$	M1	$\sqrt[3]{6+7}$ or $\sqrt[3]{3 \times 2+7}$	
	2.413(...)   or 2.4238... or 2.424 or 2.4256...   or 2.4259...	M1dep		
	2.426	A1		
	Additional Guidance			
	Answer 2.426 (eg from using starting value of 1)			M2A1
	Answer only 2.425			MOMOAO
	$\sqrt{13}$			MOMOAO
	Condone $2=\sqrt[3]{13}$ etc			

