

GCSE MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator

Mark scheme

November 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	250 × 0.85	B1	
2	x = 0	B1	
3	(6, 7)	B1	
4	16 <i>x</i> ⁴	B1	
5(a)	Says that the wrong line has been given or says that for the given reflection the image would be in the second quadrant (may be implied by sketch) or says that the given line is vertical or gives the coordinates of at least one image point under the given reflection or says that after the given reflection, a rotation 180° (centre (-1, -1)) or an enlargement, scale factor -1 (centre (-1, -1)) is needed	B1	eg the line should be $y = -1$ eg the triangle would move to the other side of the y -axis eg $x = -1$ is vertical eg $(1, 1)$ would move to $(-3, 1)$ $(1, 3)$ would move to $(-3, 3)$ $(4, 1)$ would move to $(-6, 1)$
	Additional Guidance for this question	on is on t	he next page

	Additional Guidance				
	It is the wrong line/axis (of reflection)	B1			
	It's not $x = -1$	B1			
	The line should be horizontal	B1			
	y = -1	B1			
	x = -1 line drawn with explanation that it is incorrect	B1			
	Q should be to the left of P	B1			
	Correct line drawn, with indication that it should be that line	B1			
	Correct statement with irrelevant statement				
	eg It's the wrong line and Q is in the wrong place	B1			
	Correct line drawn, but no explanation or equation given	В0			
5(a) cont	x = -1 line drawn with no explanation that it is incorrect	В0			
	It should be reflected in the <i>y</i> -axis	В0			
	It is not a reflection in $x = -1$	В0			
	Should be rotation about $y = -1$	В0			
	They are not an equal distance from each other	В0			
	It should be the point $x = -1$	В0			
	Q is in the wrong place	В0			
	It is a reflection in the <i>x</i> -axis then a translation by $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$	В0			
	Correct statement with incorrect statement eg It's the wrong line, it should be $x = -2$	В0			
	If more than one image point is given, they must all be correct				

Question	Answer	Mark	Comme	nts
	Should say the centre of rotation (is <i>O</i>)	B1	oe statement accept 'axis of rotation'	or 'point'
	Ado	ditional G	Guidance	
	Allow origin or (0, 0) for O			
	Should be about O			B1
	There is no centre			B1
	It should be around a point			B1
5(b)	It doesn't give the coordinates			B1
	Should/could be 270° clockwise about	B1		
	Should/could be 270° clockwise)° clockwise		
	Should be rotation through 90° clocky	В0		
	It is a reflection 90° anticlockwise with	n centre C)	В0
	It's not reflected on a point			В0
	Doesn't say which line you're turning	around		В0
	Correct statement with incorrect state	ment		
	eg It should give a centre of rotation a	at (0, 1)		В0
	64	B1	accept 4 ³	
6(a)	Add			
- ()	Additional Guidance 4^3 and incorrect value given $eg 4^3 = 32$			В0

Question	Answer	Mark	Comments		
6(b)	−5 −13	B2	condone -13 -5 B1 -5 as first term or ft their first term - 8		
	60×4 or $4(a \times 60)$ or $4a \times 60$ or $\frac{b}{a} = 60$ or $\frac{4b}{b/60}$ or $4b = 240a$ or $\frac{240a}{a}$	M1	accept any multiplication signs		
	240	A1	Condone $\frac{240}{1}$		
7	Additional Guidance				
	Correct answer found by substituting	appropria	te values for a and b	M1A1	
	Incorrect answer found by substituting	g appropri	iate values for a and b	M0A0	
	Award M1 for 60 × 4 or 240 in workin or as part of longer expressions	g, either a	as individual expressions		
	eg $4 \times 60 = 240$, answer $240b$			M1A0	
	$eg \frac{4 \times 60 \times a}{4b}$			M1A0	
	Do not award M1 for 240 within a list beyond 240	of multiple	es of 60 that continues		

Question	Answer	Mark	Comments		
	$(27 =) 3^3$	M1			
	$\left(\left(3^{2}\right)^{7}\right)=3^{2\times7}$				
	or	M1			
	$\left(\left(3^2 \right)^7 = \right) 3^{14}$				
	3 ¹⁷	A1ft	ft 3 ^a and 3 ^b then answe		
8			with M1M0 or M0M1 sco	ored	
	Ade				
	Answer 3 ¹⁷ with no incorrect working			M1M1A1	
	3 ¹⁷ in working with 17 on the answer or both 3 ¹⁷ and 17 on the answer line			M1M1A1	
	$3^3 \times 3^9 = 3^{12}$			M1M0A1ft	
	Evaluation of powers of 3 as values only			M0M0A0	
	Answer 17 with no valid working			M0M0A0	

Question	Answer	Mark	Comments		
	Alternative method 1: working in terms of π				
	π (×) 42 (×) 10 or 160π or [502, 503]	M1	oe accept 3 or better for π accept 480 or 496		
	$\frac{2}{3}$ (×) π (×) 6^3 or 144 π or [452, 453]	M1	oe accept 3 or better for π accept 0.66 or 0.67 or better for $\frac{2}{3}$ accept 432 or 446(.4)		
	160π and 144π or [502, 503] and [452, 453]	A1	oe values accept 480 and 432 or 496 and 446(.4)		
9	160π and 144π and cylinder or [502, 503] and [452, 453] and cylinder or cylinder is 16π greater	A1ft	ft correct decision for their 160π and their 144π with M1M1 scored accept 480 and 432 and cylinder or 496 and 446(.4) and cylinder		
	Alternative method 2: working with	nout π			
	4 ² (×) 10 or 160	M1	oe		
	$\frac{2}{3}$ (x) 6^3 or 144	M1	oe accept 0.66 or 0.67 or better for $\frac{2}{3}$		
	160 and 144	A1	oe values		
	160 and 144 and cylinder	A1ft	ft correct decision for their 160 and their 144 with M1M1 scored		
	Additional Guidance for this question	on is on t	ne next page		

	Additional Guidance	
	Better than 3 for π could be 3.1, 3.14, 3.142 or $\frac{22}{7}$	
	160π with incorrect method for hemisphere	M1M0A0A0
	144π with incorrect method for cylinder	M0M1A0A0
	160π and 144π with incorrect decision or no decision	M1M1A1A0
	160 and 144 with incorrect or no decision	M1M1A1A0
9	Accept values given as fractions for the first A mark, but for the second A mark, they must have a common denominator.	
	eg 160 π and $\frac{432\pi}{3}$ and cylinder	M1M1A1A0
	eg $\frac{480}{3}$ and $\frac{432}{3}$ and cylinder	M1M1A1A1
	Working with π for one value but not the other can only score M1	
	eg 160π and 144 (with or without a decision)	M1 only
	Do not allow M1 for a correct formula as part of an incorrect formula	
	eg $\frac{1}{3} \times \pi \times 4^2 \times 10$	MO

Question	Answer	Mark	Comments		
	Alternative method 1: total amount of each colour (judgement accepted that ratio is not 4 : 3)				
	60 ÷ (2 + 1) or 20 or 40	M1			
	80 + their 20 or 100	M1dep			
	28 + 2 × their 20 or 68	M1dep	dep on first M1 only		
	100 and 68 and No	A1			
			nuch white should have been added or yor how much there should be now		
	60 ÷ (2 + 1) or 20 or 40	M1			
	80 + their 20 or 100	M1dep			
	their 100 ÷ 4 × 3 or 75	M1dep	dep on M2		
	$(75 - 2 \times 20 =) 35$ and No or		comparing 35 to 28		
10	40 and (75 – 28 =) 47 and No or	A1			
_			v much red should have been added or		
-	how much there should have been	originally	y or how much there should be now		
-	60 ÷ (2 + 1) or 20 or 40	M1			
_	28 + 2 × their 20 or 68	M1dep			
	their $68 \div 3 \times 4$ or $90\frac{2}{3}$ or $\frac{272}{3}$	M1dep	dep on M2		
	$(90\frac{2}{3} - 20 =) 70\frac{2}{3}$ and No		comparing $70\frac{2}{3}$ to 80		
	or 20 and $(90\frac{2}{3} - 80 =) 10\frac{2}{3}$ and No	A1			
	or $90\frac{2}{3}$ and 100 and No				
	The scheme for question 10 contin	ues on th	ne next page		

Question	Answer	Mark	Comments			
	Alternative method 4: total of red and what it should be for total amount of pain					
	60 ÷ (2 + 1) or 20 or 40	M1				
	80 + their 20 or 100	M1dep				
	$(60 + 80 + 28) \div (4 + 3) \times 4$ or 96	M1				
	100 and 96 and No	A1				
	Alternative method 5: total of white	e and wha	at it should be for total a	mount of paint		
	60 ÷ (2 + 1) or 20 or 40					
	28 + 2 × their 20 or 68	M1dep				
10	$(60 + 80 + 28) \div (4 + 3) \times 3$ or 72	M1				
cont	68 and 72 and No	A1				
	Additional Guidance					
	20 from 80 ÷ 4 is incorrect					
	With no incorrect working, 'He should implies full marks	d have add	ded 76 red and 32 white'	M1M1M1A1		
	'No' can be implied, eg on alt 1 accepmore white'	M1M1M1A1				
	Condone dubious notation eg 20 : 4	M1M1M1A1				
	Ignore further work if 100 and 68 and	M1M1M1A1				
	Only works out the amounts of red are total amount of paint, eg, $168 \div 7 \times 4$	M0M0M1A0				

Question	Answer	Mark	Commer	nts		
	10 ⁵ or 25 000	M1	oe correct value not in standard form eg 25×10^3			
11(a)	2.5 × 10 ⁴	A1				
	Ado	ditional G	uidance			
	Condone 2.5 · 10 ⁴			M1A1		
	Condone different spacing or comma	s eg 250	000 or 250,00	M1A0		
11(b)	c = 3 and $d = -2$	B2	B1 $c = 3$ or $d = -2$ or $c = 10^3$ and/or $d = 10^{-2}$			
	Additional Guidance					
	One or both of the values may be em	bedded fo	or B1 only			
	${\it V}$ is directly proportional to ${\it H}$					
12	✓ V is inversely proportional to H	B1				
	\checkmark V is directly proportional to $\frac{1}{H}$					
	V is inversely proportional to $\frac{1}{H}$					

Question	Answer	Mark		Comments			
13	$\frac{1(1-4)}{\sqrt{1+3}}$ or $\frac{-3}{\sqrt{4}}$ or $\frac{6(6-4)}{\sqrt{6+3}}$ or $\frac{6\times 2}{\sqrt{9}}$ or $\frac{12}{3}$ or $\frac{4}{1}$	M1		$\frac{1^2 - 1 \times 4}{\sqrt{1+3}}$ $\frac{6^2 - 6 \times 4}{\sqrt{6+3}}$			
	$\frac{-3}{2}$ or $-1\frac{1}{2}$ or -1.5 or 4	M1dep					
	$2\frac{1}{2}$ or $\frac{5}{2}$ or 2.5	A1	oe mixed number, fraction or decimal			nal	
	Ado	ditional G	uidaı	nce			
	$\frac{n^2 - 4n}{\sqrt{n+3}}$ with no correct substitution			МОМОАО			
14	90	B1					
	All correct	B3		or 3 correct or 1 or 2 correct			
	Additional Guidance						
		True May be true		May be true	No	ot true	
15	The quadrilateral is a rectangle			✓			
	The quadrilateral is a parallelogram	✓					
	The quadrilateral is a rhombus					✓	
	The quadrilateral is a kite					✓	
		ı					

Question	Answer	Mark	Comments		
	Alternative method 1				
	$45 \times \frac{5}{3}$ or 75	M1	75 seen as total of Small column implied by 120 seen as overall total		
	(their 75 + 45) ÷ (1 + 3) or 120 ÷ 4 or 30 (Yellow)	M1dep	30 seen as total of Yellow row		
	their 30 – 12 or 18 (Large Yellow)	M1dep	18 in Large Yellow cell		
	27	A1	Accept 27 in correct cell if answer blank		
	Alternative method 2				
	$45 \times \frac{5}{3}$ or 75	M1	75 seen as total of Small column implied by 120 seen as overall total		
16	their 75 – 12 or 63 (Small Green)	M1dep	63 in Small Green cell		
	(their 75 + 45) \div (1 + 3) \times 3 or 120 \div 4 \times 3 or 90 (Green)	M1dep	dep on first M1 90 seen as total of Green row		
	27	A1	Accept 27 in correct cell if answer blank		
	Alternative method 3				
	$45 \times \frac{5}{3}$ or 75	M1	75 seen as total of Small column implied by 120 seen as overall total		
	their 75 – 12 or 63 (Small Green)	M1dep	63 in Small Green cell		
	their $63 + x = 3(45 - x + 12)$	M1dep	oe $63 + x = 171 - 3x$		
	27	A1	Accept 27 in correct cell if answer blank		
	Ad	ditional G	uidance		
	In alt 2, 90 only implies M1M0M1 – 6	3 is also n	eeded for M1M1M1		

Question	Answer	Mark	Comments
17	$\begin{pmatrix} -6 \\ 17 \end{pmatrix}$	B1	

	Alternative method 1		
	2 <i>x</i> + 20	M1	correct expansion
	x + 15 = 6x + 60	M1dep	multiplication by 3
	15 - 60 = 6x - x or $-45 = 5x$		collects terms
	or	M1dep	
	60 - 15 = x - 6x or $45 = -5x$		
	- 9	A1	SC2 –3 from 2 <i>x</i> + 10
		Ai	or 1 from 6 <i>x</i> + 10
	Alternative method 2		
	2 <i>x</i> + 20	M1	correct expansion
18	$\frac{x}{3} + 5 = 2x + 20$		splits the fraction and collects terms
	and		
	$5 - 20 = 2x - \frac{x}{3}$ or $-15 = \frac{5x}{3}$	M1dep	
	or $20 - 5 = \frac{x}{3} - 2x$ or $15 = -\frac{5x}{3}$		
	15 - 60 = 6x - x or $-45 = 5x$		multiplication by 3
	or	M1dep	
	60 - 15 = x - 6x or $45 = -5x$		
	-9	A1	SC2 -3 from $2x + 10$
			or 1 from $6x + 10$
	The scheme for this question cont	inues on	the next page

Question	Answer	Mark	Commer	nts	
	Alternative method 3				
	6(x + 10) or $6x + 60$	M1	multiplication of rhs by 3		
	x + 15 = 6x + 60	M1dep	correct expansion		
18 cont	15 - 60 = 6x - x or $-45 = 5x$		collects terms		
Come	or $60 - 15 = x - 6x$ or $45 = -5x$	M1dep			
	-9	A1	SC2 -3 from $2x + 10$ or 1 from $6x + 10$		
	Team A and states that the median is higher				
	or Team A and states that the averages are 9.8 and 9.7	B1			
	Additional Guidance				
19(2)	If values are given for the medians they must be correct; Team A 9.8 and Team B 9.7				
19(a)	Accept medium or middle or midpoint for median				
	Do not accept answers which also mention other statistical measures				
	Team A and 'The median is further'			B1	
	Team A and 'A is 9.8 and B is 9.7'			B1	
	Team A and 'A is 9.8'			В0	
	Team A and 'The average is higher'			В0	

Question	Answer	Mark	Commer	nts	
	States that the interquartile (range) is lower	B1	oe accept 'narrower box'		
	Ade	ditional G	Guidance		
	If values are given for the interquartile	e ranges t	hey must be correct;		
	Team A 0.4 and Team B 0.5				
19(b)	Apart from stating that the ranges are which also mention other statistical m		o not accept answers		
	The box is smaller	B1			
	The distance between LQ and UQ is smaller			B1	
	The box plot is smaller	В0			
	0.4 and 0.5 without IQR mentioned			В0	
	<u>8</u> 21	B1	oe fraction, decimal or p	ercentage	
20(a)	Additional Guidance				
	Ignore attempts to convert a correct fraction to a decimal or percentage			B1	
	<u>4</u> 15	B1	oe fraction, decimal or p	ercentage	
20(b)	Additional Guidance				
	Ignore attempts to convert a correct f	raction to	a decimal or percentage	B1	

Question	Answer	Mark	Comme	nts
20(c)	$\frac{28}{36}$ and $\frac{25}{36}$ or 28 and 25	B2	oe fractions with commodecimals or percentages B1 $\frac{28}{36}$ or $\frac{25}{36}$ or 13, 11 and 4 or 28 or 13, 8 and 4 or 25 or Venn diagrams draw correct regions	
	Additional Guidance			
	28 or 25 as a numerator with an incorrect denominator B1			B1
21	0.70384	B1		

Question	Answer	Mark	Commer	nts
22	$\frac{10-0}{6-4} \text{ or } (m=) \frac{10}{2}$ or $-3-(6-4) \text{ or } -3-2$ or $4-(6-(-3)) \text{ or } -5 \text{ or } (-5,0)$ and $\frac{10-0}{-3-(-5)}$ or $(m=) \frac{10}{2}$ or $0=4m+k \text{ and } 10=6m+k$ and $10-0=6m-4m$ or $2m=10$ or $(m=) 5$	M1	oe method to find the graline implied by $y = 5x$	adient of either
	10 = their 5 × (-3) + c or $(c =)$ 5 × $(6 - (-3)) - 20$ or $(c =)$ 25 or $y - 10 =$ their $5(x - (-3))$ or $y = 5(x + 9) - 20$ or $5x + 25$ y = 5x + 25	M1dep	oe	
	•	ditional G	Suidanco	
	Do not allow further incorrect work, e	g y = 5x +	25 and then $y = x + 5$	M1M1A0

M1M1A0

Question	Answer	Mark	Commer	nts
23(a)	(5x - 4)(x + 2)	B2	brackets in either order B1 factorisation to $(5x + ab = -8 \text{ or } a + 5b = 6$ or $\frac{1}{5}(5x - 4)(5x + 10)$	a)($x + b$) where
	Additional Guidance			
	Ignore any attempt to solve $(5x - 4)(x + 2) = 0$			
	Attempt at further factorisation, eg $(5x - 4)(x + 2) = 5(x - 0.8)(x + 2)$			B1
	(x + 2)(x + 7)	M1	brackets in either order	
	(x + 2)(x - 2)	M1	brackets in either order	
23(b)	$\frac{x+7}{x-2}$	A1		
	Add	ditional G	uidance	

Further cancelling, eg $\frac{x+7}{x-2} = \frac{7}{2}$

Question	Answer	Mark	Comments
	Alternative method 1		
	$(\sqrt{18} =) \sqrt{9} \sqrt{2} \text{ or } 3\sqrt{2}$ or $(\sqrt{50} =) \sqrt{25} \sqrt{2} \text{ or } 5\sqrt{2}$	M1	oe simplifies one surd implied by $\frac{28}{5\sqrt{2}}$
24	$\frac{28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}}$ or $\frac{28\sqrt{50}}{50}$	M1	oe rationalises second term $\frac{28}{5\sqrt{2}} \times \frac{5\sqrt{2}}{5\sqrt{2}} \text{or} \frac{140\sqrt{2}}{50}$ or $\frac{14\sqrt{2}}{5} \text{ implies M1M1}$
	$3\sqrt{2} - \frac{140\sqrt{2}}{50}$ or $\frac{150\sqrt{2} - 140\sqrt{2}}{50}$ or $\frac{10\sqrt{2}}{50}$	M1dep	dep on M2 oe both terms rational with a common surd
	$\frac{\sqrt{2}}{5}$ or $a = 2, b = 5$	A1	oe in the form $\frac{\sqrt{a}}{b}$ eg $\frac{\sqrt{50}}{25}$ or $\frac{\sqrt{200}}{50}$
	The scheme for this question cont	inues on	the next page

Answer	Mark	Commer	nts
Alternative method 2			
$(\sqrt{18} =) \sqrt{9}\sqrt{2} \text{ or } 3\sqrt{2}$ or $(\sqrt{50} =) \sqrt{25} \sqrt{2} \text{ or } 5\sqrt{2}$ or $\frac{\sqrt{18}\sqrt{50}}{\sqrt{50}} \text{ or } \frac{\sqrt{900}}{\sqrt{50}}$ $\frac{\sqrt{900}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{3\sqrt{2} \times 5\sqrt{2}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{30 - 28}{\sqrt{50}}$ or $\frac{2}{\sqrt{50}}$	M1	oe simplifies one surd implied by $\frac{28}{5\sqrt{2}}$ or changes first term to roe common denominator	match second
$\frac{30-28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}}$ or $\frac{2\sqrt{50}}{50}$	M1dep	oe rationalisation of a single	e term
$\frac{\sqrt{2}}{5}$ or $a = 2, b = 5$	A1	oe in the form $\frac{\sqrt{a}}{b}$ eg $\frac{\sqrt{50}}{25}$ or $\frac{\sqrt{200}}{50}$	
Additional Guidance			
Ignore further work after a correct val	lue, eg $\frac{\sqrt{2}}{2}$	$\frac{50}{25} = \sqrt{2}$	M1M1M1A1
1 or 100%	B1	oe fraction, decimal or p eg $\frac{56}{56}$	ercentage
Add	ditional G	uidance	
Do not accept answers in words only	, eg 'Certa	ain'	В0
	Alternative method 2 $(\sqrt{18} =) \sqrt{9}\sqrt{2} \text{ or } 3\sqrt{2}$ or $(\sqrt{50} =) \sqrt{25}\sqrt{2} \text{ or } 5\sqrt{2}$ or $\frac{\sqrt{18}\sqrt{50}}{\sqrt{50}} \text{ or } \frac{\sqrt{900}}{\sqrt{50}}$ or $\frac{\sqrt{900}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{3\sqrt{2} \times 5\sqrt{2}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{30-28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}}$ or $\frac{30-28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}}$ or $\frac{2\sqrt{50}}{\sqrt{50}}$ or $a = 2, b = 5$ Additionally the sum of t	Alternative method 2 $(\sqrt{18} =) \sqrt{9}\sqrt{2} \text{ or } 3\sqrt{2}$ or $(\sqrt{50} =) \sqrt{25} \sqrt{2} \text{ or } 5\sqrt{2}$ or $(\sqrt{50} =) \sqrt{25} \sqrt{2} \text{ or } 5\sqrt{2}$ or $\frac{\sqrt{18}\sqrt{50}}{\sqrt{50}} \text{ or } \frac{\sqrt{900}}{\sqrt{50}}$ $\frac{\sqrt{900}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{3\sqrt{2} \times 5\sqrt{2}}{\sqrt{50}} - \frac{28}{\sqrt{50}}$ or $\frac{30 - 28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}} \text{ or } \frac{2\sqrt{50}}{50}$ M1dep $\frac{\sqrt{2}}{5}$ or $a = 2, b = 5$ Additional G Ignore further work after a correct value, eg $\frac{\sqrt{2}}{2}$ 1 or 100% B1	Alternative method 2 $(\sqrt{18} =) \sqrt{9}\sqrt{2} \text{ or } 3\sqrt{2} \text{ or } 5\sqrt{2} \text$

Question	Answer	Mark	Comments		
	Alternative method 1				
	$\frac{3}{8}$ and $\frac{2}{7}$ or $\frac{6}{56}$	M1	may be seen on a tree diagram oe fraction, decimal or percentage eg $\frac{3}{28}$		
	$1 - (\frac{3}{8} \times \frac{2}{7})$ or $1 - \frac{6}{56}$	M1dep			
	<u>50</u> 56	A1	oe fraction, decimal or percentage eg $\frac{25}{28}$		
	Alternative method 2				
25(b)	$\frac{5}{8}$ and $\frac{4}{7}$ or $\frac{20}{56}$ or $\frac{5}{8}$ and $\frac{3}{7}$ or $\frac{3}{8}$ and $\frac{5}{7}$ or $\frac{15}{56}$ or $\frac{30}{56}$	M1	may be seen on a tree diagram oe fraction, decimal or percentage		
	$\frac{5}{8} \times \frac{4}{7} + 2(\frac{5}{8} \times \frac{3}{7})$ or $\frac{20}{56} + 2(\frac{15}{56})$ or $\frac{20}{56} + \frac{30}{56}$	M1dep	oe eg $\frac{5}{8} \times \frac{4}{7} + \frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7}$		
	<u>50</u> 56	A1	oe fraction, decimal or percentage $eg \ \frac{25}{28}$		
	Ad	ditional G	Guidance		
	Condone a correct pair of fractions so eg $\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$ or $\frac{5}{8} \times \frac{2}{7} \times \frac{3}{8} \times$				

Question	Answer	Mark	Comments		
	Alternative method 1: using the radius				
	2π <i>r</i>	M1			
	$2\pi r \times \frac{x}{360}$	M1dep	oe length of arc		
	$2\pi r = 2\pi r \times \frac{x}{360} + 2r$		oe equation		
	or $\pi = \frac{\pi x}{360} + 1$	M1dep			
	or $2\pi = \frac{2\pi x}{360} + 2$				
	$\frac{360(\pi-1)}{\pi}$ or $\frac{360\pi-360}{\pi}$ or $360-\frac{360}{\pi}$	A1	oe expression in π with r can throughout	celled	
26	Alternative method 2: using the diameter				
	πd	M1	oe		
	$\pi d \times \frac{x}{360}$	M1dep	oe length of arc		
	$\pi d = \pi d \times \frac{x}{360} + d$		oe equation		
	or	M1dep			
	$\pi = \frac{\pi x}{360} + 1$				
	$\frac{360(\pi-1)}{\pi}$ or $\frac{360\pi-360}{\pi}$	A1	oe expression in π with d car throughout	ncelled	
	or $360 - \frac{360}{\pi}$				
	Ado	ditional G	Guidance		
	Ignore attempts to simplify, cancel or expand a correct expression M1M1M1A1			M1M1M1A1	

Question	Answer	Mark	Comme	nts	
	Alternative method 1				
27(a)	$(x-3)^2$	M1	may be preceded by $y =$		
	3	A1			
	Alternative method 2				
	$(8 = x^2 - 6x + 17 \text{ and})$ $x^2 - 6x + 9 (= 0)$	M1			
	3	A1			
27(b)	$(x+2)^2 - 4 + b$ or $-4 + b = 8$	M1			
	12	A1	SC1 12 from $(x-2)^2 - 4$	4 + <i>b</i>	
28	$\frac{1}{10}$ or 0.1	B2	B1 $\sqrt{100}^{-1}$ or 10^{-1} or 10^{-1} or $\frac{1}{100}^{\frac{1}{2}}$ or $\frac{1}{\sqrt{100}}$ or	, ,	
	Additional Guidance				
	Accept \pm or $-$ for B1 only, eg \pm 10 ⁻¹ or $-\frac{1}{10}$			B1	

Question	Answer	Mark	Comments			
	Alternative method 1					
	$(\sin 30^\circ =) \frac{1}{2}$		may be seen beside question			
	or (cos 30° =) $\frac{\sqrt{3}}{2}$					
29	or (tan 30° =) $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$	M1				
	or $\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)$					
	$5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{1}{\sqrt{3}}\right)$		oe multiplication string with all correct values			
	or $5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)$	M1dep				
	or $\frac{5}{2} \times \frac{\sqrt{3}}{2} \times \frac{8\sqrt{3}}{3}$					
	$\frac{40\sqrt{3}}{4\sqrt{3}}$ or $\frac{40\sqrt{3}\sqrt{3}}{12}$	M1dep	oe single fraction with roots rationalised or able to be cancelled			
	10 from correct working	A1				
	Alternative method 2: substituting $\frac{\sin}{\cos}$ for tan and cancelling					
	$5\sin 30^{\circ} \times \cos 30^{\circ} \times 8 \frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	M1				
	40sin ² 30°	M1dep	oe cancels cos 30°			
	$40\left(\frac{1}{2}\right)^2$	M1dep	oe			
	10 from correct working	A1				