AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	Forces are either contact forces or non-contact forces.

$\mathbf{0}$	$\mathbf{1}$.
$\mathbf{1}$	Which of the following is a non-contact force?

Tick (\checkmark) one box.

Electrostatic force \square

Friction force

Tension force \square

Figure 1 shows a person standing on some bathroom scales.
Figure 1

The person exerts a downward force on the scales and the scales exert an upward force on the person.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ Which sentence about the forces is true?

Tick (\checkmark) one box.

The downward force is less than the upward force.

The downward force is the same size as the upward force.

The downward force is greater than the upward force. \square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ What is the name of the upward force on the person? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Air resistance

Normal contact force

Weight

| 0 | 1 | .4 |
| :--- | :--- | :--- | The person on the scales has a mass of 55 kg .

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the person.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
Weight = N

| 0 | 1 | .5 |
| :--- | :--- | :--- | The gravitational field strength is not the same at all points on the surface of the Earth.

The gravitational field strength is weakest at the equator.
A person travelled from the UK to the equator.

What happened to the weight of the person?
Tick (\checkmark) one box.

The weight decreased.

The weight remained the same.

The weight increased.

What is the name given to point \mathbf{X} ?
Tick (\checkmark) one box.

Centre of force

Centre of mass

Centre of weight

$\mathbf{0}$	$\mathbf{1}$.7
$\mathbf{7}$	Determine the size of the resultant force on the person in Figure 2.	

\qquad
\qquad
Resultant force $=$ \qquad N

0	2	Magnets attract some metals.

0	2	1
1		

Tick (\checkmark) one box.

Figure 3 shows an iron bar near a permanent magnet.
Figure 3

The iron bar becomes an induced magnet.

$\mathbf{0}$	$\mathbf{2}$.
$\mathbf{2}$ Label the poles on the iron bar.	

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ The magnet is turned around so that the north pole is closest to the iron bar. |
| :--- | :--- | :--- | :--- |

Which statement about the iron bar is true?
Tick (\checkmark) one box.

The iron bar does not experience a magnetic force.

The iron bar experiences a magnetic force of attraction. \square
The iron bar experiences a magnetic force of repulsion.

Question 2 continues on the next page

Figure 4 shows an electromagnet being used to separate pieces of different types of metal on a conveyor belt.

Figure 4

| $\mathbf{0}$ | $\mathbf{2} .4$ Which two of the following types of metal would be attracted to the electromagnet? |
| :--- | :--- | :--- |

Tick (\checkmark) two boxes.

Aluminium

Copper

Magnesium

Nickel

Steel

| $\mathbf{0}$ | $\mathbf{2} .5$ | $\mathbf{5}$ What is an advantage of using an electromagnet instead of a permanent magnet to |
| :--- | :--- | :--- | :--- | separate the types of metal?

Tick (\checkmark) one box.

An electromagnet attracts more types of metal than a permanent magnet.

An electromagnet can be switched on and off.

An electromagnet transfers less energy than a permanent magnet.

Figure 5 shows a simple electromagnet.
Figure 5

$\mathbf{0}$	$\mathbf{2} .6$	\mathbf{W}

Tick (\checkmark) one box.

The iron nail makes the magnetic field stronger.

The iron nail reduces the magnetic field to zero.

The iron nail reverses the magnetic field.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | Which of the following would increase the strength of the electromagnet?

Tick (\checkmark) one box.

Use a greater current.

Use a shorter nail.

Use a thinner wire.

| 0 | 3 | The stopping distance of a car is the sum of the thinking distance and the |
| :--- | :--- | :--- | braking distance.

0	$\mathbf{3}$.	$\mathbf{1}$ The thinking distance is affected by the reaction time of the driver.

Which two of the following can affect the reaction time of the driver?
Tick (\checkmark) two boxes.

Damaged brakes

Taking drugs

Tiredness

Wet roads

Worn tyres

Scientists measured the reaction time for drivers of different ages.
Figure 6 shows the results.
Figure 6

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ At what age did the drivers have the lowest mean reaction time?

Age $=$ \qquad years

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ What was the lowest mean reaction time? |
| :--- | :--- | :--- | :--- |

Time $=$ \qquad seconds

Question 3 continues on the next page

When the brakes are applied, the kinetic energy of the car \qquad .

The temperature of the brakes \qquad .

The braking distance of a car is the distance travelled between the driver applying the brakes and the car stopping.

Choose answers from the box.
Each answer may be used once, more than once or not at all.
decreases
stays the same
increases

0	3	5

The driver applies the brakes and the car decelerates at a constant $3.0 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the braking distance of the car.
Use the equation:

$$
\text { braking distance }=\frac{(\text { speed })^{2}}{2 \times \text { deceleration }}
$$

Choose the unit from the box.

| $\mathbf{m} \quad \mathbf{k g}$ | |
| :---: | :---: | :---: |
| | Braking distance $=$ |

\qquad
\qquad
\qquad
\qquad
\qquad
Braking distance $=$ \qquad Unit \qquad

| $\mathbf{0}$ | $\mathbf{3} .6$ To pass the UK driving test, people must know the typical stopping distance of a car |
| :--- | :--- | :--- |

at certain speeds. Suggest one reason why.
\qquad
\qquad

0	4	Figure 7 shows a ripple tank.

The wooden bar vibrates up and down producing waves on the water.
The light source produces shadows of the water waves on the screen.
Figure 7

0	$\mathbf{4}$.	$\mathbf{1}$ Describe how the student can measure the frequency and wavelength of the waves.

You should refer to any equipment the student needs in your answer.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A student measured the frequency and wavelength of the waves produced.
Table 1 shows some of the results.

Reading	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Mean
Frequency in hertz	12.8	12.4	12.3	\mathbf{X}

| 0 | 4 | 2 |
| :--- | :--- | :--- | Calculate value X in Table 1.

$$
X=
$$

| 0 | 4 | 3 |
| :--- | :--- | :--- | Why is it a good idea to take repeat readings and then calculate a mean?

Tick (\checkmark) one box.

To reduce the effect of random errors.

To reduce the effect of systematic errors.

To reduce the effect of zero errors.

Question 4 continues on the next page

Calculate the period of the waves.
Use the equation:

$$
\text { period }=\frac{1}{\text { frequency }}
$$

\qquad
\qquad
\qquad
Period = s

Calculate the wave speed.
Use the equation:
wave speed $=$ frequency \times wavelength
\qquad
\qquad
\qquad
Wave speed = \qquad m / s

| $\mathbf{0}$ | $\mathbf{5}$ Scientists are developing a rocket aeroplane designed to travel much faster than |
| :--- | :--- | :--- | jet aeroplanes.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ The rocket aeroplane must accelerate along a runway to take off.

What would happen to the air resistance acting on the rocket aeroplane as it accelerates?
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{2}$	An upward force called lift will act on the wings of the rocket aeroplane when it moves.

Complete the sentence.
Choose the answer from the box.

less than	the same as	greater than

As the rocket aeroplane starts to accelerate along the runway, the lift force on the wings will be \qquad the weight of the rocket aeroplane.

Question 5 continues on the next page

| 0 | 5 | 3 |
| :--- | :--- | :--- | will be $35 \mathrm{~m} / \mathrm{s}$.

Calculate the distance that the rocket aeroplane will travel during the first 14 seconds. Use the equation:

$$
\text { distance travelled }=\text { average speed } \times \text { time }
$$

\qquad
\qquad
\qquad
Distance travelled = \qquad m

\qquad

0	5	5
When the rocket aeroplane travels a distance of 270 m on the runway the engines will		

Calculate the average force exerted by the engines.
\qquad
\qquad
\qquad
\qquad
\qquad
Average force $=$ \qquad N

| $\mathbf{0}$ | $\mathbf{5} .6$ | 6 |
| :--- | :--- | :--- | The rocket aeroplane will fly at a greater height than a jet aeroplane.

The height that an aeroplane flies at affects the radiation dose a passenger will receive each hour.

Table 2 shows the speed of each aeroplane and the radiation dose a passenger will receive each hour.

Table 2

Aeroplane	Speed in metres per second	Radiation dose each hour in millisieverts
Rocket aeroplane	8000	0.006
Jet aeroplane	250	0.003

Exposure to ionising radiation has risks and possible consequences.

Evaluate the risks and possible consequences of flying in a rocket aeroplane and in a jet aeroplane.

Assume the same journey is made in each aeroplane.
Use values from Table 2.

0	6	Figure 8 shows a stretched spring.

The spring is elastically deformed.
Figure 8

| 0 | 6 | 1 |
| :--- | :--- | :--- |W^{1} What is meant by 'elastically deformed'?

Tick (\checkmark) one box.

As the force on the spring increases the length of the spring increases.

Only a very small force is needed to stretch the spring.

The force on the spring causes it to change shape.

The spring will return to its original length when the force is removed.

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ Describe a method to determine the extension of the spring.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{3}$ The extension of the spring is 80 mm.

spring constant $=40 \mathrm{~N} / \mathrm{m}$

Calculate the elastic potential energy of the spring.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Elastic potential energy = J

Question 6 continues on the next page

| $\mathbf{0}$ | $\mathbf{6} .4$ | Write down the equation which links extension (e), force (F) and spring constant (k). |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{6} .5$ | E force of 300 N acts on a different spring. |
| :--- | :--- | :--- | :--- |

The force causes the spring to extend by 0.40 m .

Calculate the spring constant of the spring.
\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ \qquad N / m
Turn over for the next question

| $\mathbf{0}$ | $\mathbf{7}$ | Professional rugby players wear a tracking device that measures their velocity |
| :--- | :--- | :--- | and acceleration.

Figure 9 shows a player wearing a tracking device.
The player is tackling another player who is running with the ball.
Figure 9

0	7	1

What is a vector quantity?
Tick (\checkmark) one box.

A quantity with both magnitude and direction

A quantity with direction only \square

A quantity with magnitude only \square

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{2}$ Which of the following is a vector quantity?

Tick (\checkmark) one box.

Displacement

Distance

Time

Work done

Question 7 continues on the next page

Figure 10 shows a velocity-time graph for the player running with the ball.
Figure 10

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Determine the acceleration of the player between 0 and 1.6 s. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

$\mathbf{0}$	$\mathbf{7} .4$	Describe the motion of the player between 3.4 s and 3.6 s.

\qquad
\qquad

The force exerted on the player when she is tackled causes her to accelerate.

| 0 | $\mathbf{7} .5$ | $\mathbf{5}$ Write down the equation which links acceleration (a), mass (m) and |
| :--- | :--- | :--- | resultant force (F).

\qquad

| $\mathbf{0}$ | $\mathbf{7} .6$ |
| :--- | :--- | :--- | The player accelerates at $25 \mathrm{~m} / \mathrm{s}^{2}$ when a resultant force of 1800 N acts on her.

Calculate the mass of the player.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg

| 0 | $\mathbf{7}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | The tracking device sends data to a computer during the game.

Suggest one advantage of the data being sent during the game.
\qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

