

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

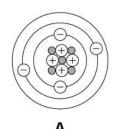
Information

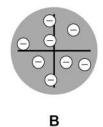
- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
TOTAL			

- 0 1 This question
 - This question is about the periodic table.
- 0 1. 1 Figure 1 shows part of Mendeleev's version of the periodic table.

Figure 1


F	1														
L	i	В	е		В			С		N		0	F		
N	а	M	lg		Αl			Si		Р	9	S	Cl	5	
K	Cu	Са	Zn				Ti		V	As	Cr	Se	Mn	Br	Fe Co Ni
Rb	Ag	Sr	Cd	Υ	W	ln	Zr	Sn	Nb	St	Мо	Te		ı	Ru Rh Pd


Which group of elements had **not** been discovered when Mendeleev's version of the periodic table was published?

[1 mark]

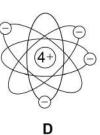


Figure 2

0 1. 2 Which model represents the plum pudding model?

[1 mark]

Tick (\checkmark) one box.

A

В

С

D

0 1.3 Which model resulted from Chadwick's experimental work?

[1 mark]

Tick (✓) one box.

A

В

С

D

Question 1 continues on the next page

	Potassium has di	ferent isotopes.				
1.4	What is meant by	'isotopes'?				
	You should refer t	o subatomic particle	S.	[2 marks]		
1 . 5	Table 1 shows the	e mass numbers and	I the percentage abundance of t	wo		
, , , , , ,	isotopes of potass					
			Table 1			
		Mass number	Percentage abundance			
		39	93.1			
		41	6.9			
	Calculate the relative atomic mass (A_r) of potassium.					
	Give your answer	to 1 decimal place.		[3 marks]		
		Dalativa				
		Relative	atomic mass (1 decimal place) =	=		

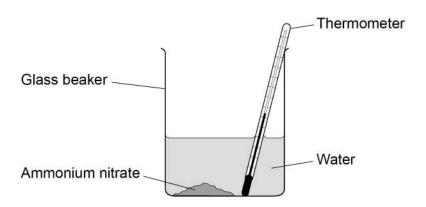
0 2	Acids react to produce salts.
	Universal indicator is added to water and then nitric acid is added to the mixture.
0 2 . 1	Give the colour change when nitric acid is added to the mixture of universal indicator and water. [1 mark] Tick (✓) one box. Blue to red Green to purple Green to red Red to purple
0 2.2	What happens to the pH of water when nitric acid is added? Tick (✓) one box. Decreases Stays the same Increases
0 2 . 3	What is the state symbol for nitric acid? [1 mark]

	Zinc carbonate reacts with nitric acid.			
	The word equation for the reaction is:			
	zinc carbonate + nitric acid → zinc nitrate + water + carbon dioxide white solid colourless solution			
0 2.4	Give two observations that would be made when zinc carbonate is added to nitric acid until the zinc carbonate is in excess. [2 marks]			
	1			
	2			
0 2 . 5	The formula of the zinc ion is Zn ²⁺			
	The formula of the nitrate ion is NO ₃ ⁻			
	What is the formula for zinc nitrate? [1 mark]			
	Tick (✓) one box.			
	ZnNO ₃			
	Zn(NO ₃) ₂			
	Zn ₂ NO ₃			
	Zn ₂ (NO ₃) ₂			
	Question 2 continues on the next page			

0 2 . 6	Acids react with insoluble metal oxides to produce salts.	
	Plan a method to produce a pure, dry sample of the soluble salt copper chlor an acid and a metal oxide.	ide from

0	3
---	---

This question is about energy change.


A student investigated the temperature change when 10 g of ammonium nitrate was added to 100 cm³ of water.

This is the method used.

- 1. Measure the temperature of 100 cm³ of water.
- 2. Add 10 g of ammonium nitrate.
- 3. Stir once.
- 4. Measure the temperature of the solution every minute for 7 minutes.

Figure 3 shows the apparatus.

Figure 3

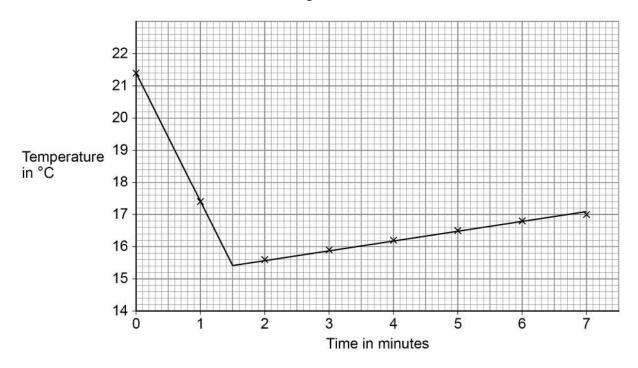
0 3 . 1	What is the dependent variable in this investigation?

[1 mark]

[3 marks]

0 3 . 2	Give three improvements to the investigation to make the results more accurate.
	[3 m

1				


2 _____

3 _____

0 3 Figure 4 shows the results.

Figure 4

Explain the results.	[4 marks]		

Question 3 continues on the next page

12 Do not write outside the 0 3 . 4 Draw a reaction profile for an exothermic reaction. You should label: • the energy level of the reactants and of the products • the activation energy • the overall energy change. [4 marks] Energy 12 Progress of reaction

box

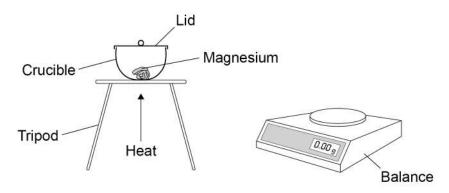
0 4	Carbon can exist in a number of different structures.	Do not write outside the box
0 4.1	The first fullerene to be discovered was Buckminsterfullerene. What is the formula of Buckminsterfullerene?	
0 4.2	C ₆₀ C ₇₀ Graphite is a form of carbon. Explain why graphite conducts electricity. [2 marks]	

	Steel is an alloy of iron and ca	arbon.				
4.3	Explain why steel is harder the	an iron.			[3 ma	arks]
4 . 4	Iron is alloyed with carbon and	d other meta	als to make st	ainless steel.		
	A stainless steel fork contains					
	Table 2 shows the mass of ea	ach element	t in the fork.			
	Table 2 shows the mass of ea		t in the fork.			
	Table 2 shows the mass of ea			Chromium	Nickel	
		Ta	able 2	Chromium 10.44	Nickel 5.80	
	Element Mass of element in g	Iron X	Carbon 0.05			
	Element	Iron X	Carbon 0.05			arks]
	Element Mass of element in g	Iron X	Carbon 0.05		5.80	arks]
	Element Mass of element in g	Iron X	Carbon 0.05		5.80	arks]
	Element Mass of element in g	Iron X	Carbon 0.05		5.80	arks]
	Element Mass of element in g	Iron X	Carbon 0.05		5.80	arks]
	Element Mass of element in g	Iron X	Carbon 0.05		5.80	arks]

0 5	This question is about the electrolysis of aqueous solutions.	
	Hydrogen gas and chlorine gas are produced when sodium chloride solution is electrolysed.	
0 5.1	Hydrogen ions (H ⁺) are attracted to the negative electrode.	
	The half equation for the reaction at the negative electrode is:	
	$2H^+$ + $2e^ \rightarrow$ H_2	
	What type of reaction happens at the negative electrode?	
	Give the reason for your answer.	
	[2 ma	ırks]
	Type of reaction	
	Reason	
0 5 2	Chloride ions are attracted to the positive electrode.	
0 5 . 2		
	Complete the half equation for the production of chlorine gas (Cl ₂). [2 mag)	arks]
	$__$ Cl $^ \rightarrow$ $__$ + $__$	

0 5.3	Hydrogen gas and oxygen gas are produced when sodium sulfate solution is electrolysed.	outside box
	Explain how oxygen gas is produced in the electrolysis of sodium sulfate solution. [4 marks]	
		8

Turn over for the next question



0	6	Metal oxides are produced when metals are heated in air

A student investigated the change in mass when 0.12 g of magnesium was heated in air.

Figure 5 shows the apparatus.

Figure 5

The student measured the mass of magnesium oxide produced.

0 6 . 1	0.12 g of magnesium reacted to produce 0.20 g of magnesium oxide.					
	Calculate the number of moles of oxygen gas (O2) that reacted.					
	Relative atomic mass (A_r) : O = 16	[3 marks]				
	Moles of oxygen gas =					

0 6.2	The student repeated the experiment without a lid on the crucible.
	Suggest why the mass of magnesium oxide produced would be different without a lid on the crucible.
	[2 marks]
0 6 . 3	Copper reacts with oxygen to produce copper oxide.
	63.5 g of copper produces 79.5 g of copper oxide.
	Calculate the mass of copper oxide produced when 0.50 g of copper reacts with oxygen.
	Give your answer to 3 significant figures.
	[3 marks]
	Mass (3 significant figures) = g
	wass (o significant figures)
	Question 6 continues on the next page

0 6 . 4	Iron reacts with oxygen to produce an oxide of iron.	Do not write outside the box
	0.015 moles of iron reacts with 0.010 moles of oxygen gas (O_2) .	
	Determine:	
	the formula of the iron oxide produced	
	• the balanced symbol equation for the reaction. [4 marks]	
	Formula of iron oxide =	
	Balanced symbol equation	
		12

0 7	Methane and wat	e, ethane, propane and butane er.	all react with	oxygen to pr	oduce carbor	n dioxide
0 7.1		t why a mixture of methane and in terms of particles.	l oxygen does	s not react at	·	rature.
0 7.2		shows the energy released wh gen to produce carbon dioxide	and water. Table 3	ethane and p		:
			Methane	Ethane	Propane	
		Formula of compound	CH₄	C ₂ H ₆	C ₃ H ₈	
		Energy released in kJ/mol	680	1160	1640	
		the energy released when butar dioxide and water.	ne (C4H10) rea	acts with oxy	-	ce [1 mark]
			Energy	released = _		kJ/mol

Do not write outside the

0 7 . 3 Propane reacts with oxygen to produce carbon dioxide and water.

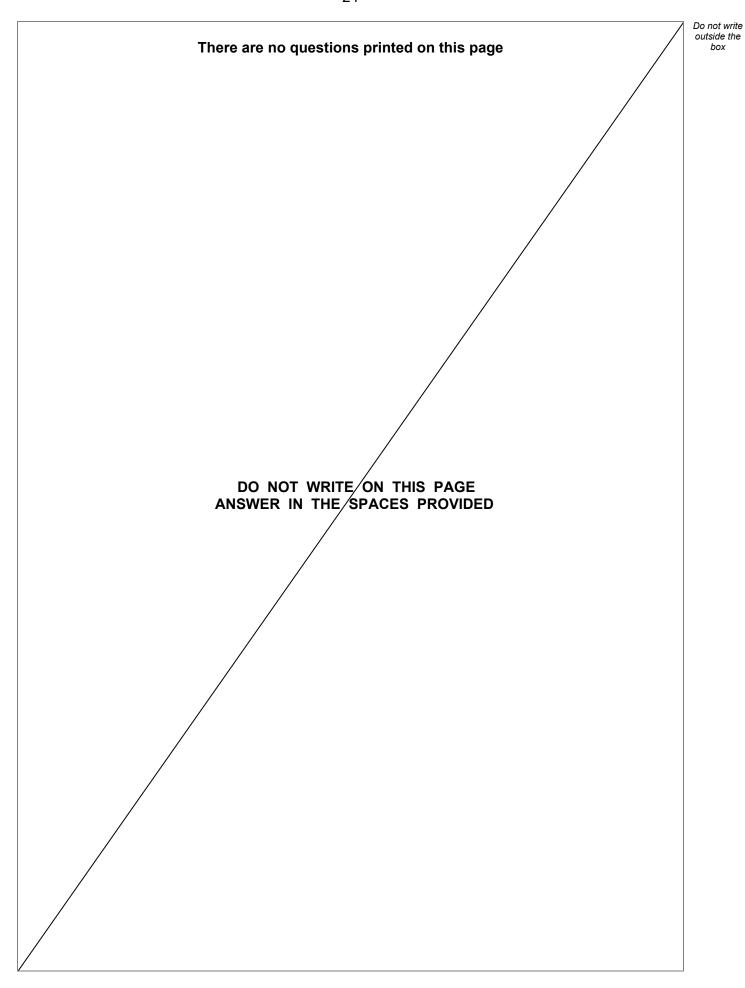
The displayed formula equation for the reaction is:

The reaction is exothermic.

In the reaction, the energy released when forming new bonds is 1640 kJ/mol greater than the energy needed when breaking bonds.

Table 4 shows bond energies.

Table 4


Bond	H–C	C-C	O=O	C=O	O–H
Bond energy in kJ/mol	410	Х	500	740	460

Calculate the C—C bond energy (X).	[5 marks]

X = kJ/mol

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

