AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier
Chemistry Paper 1F
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 |
| :--- | :--- |\quad Magnesium is in Group 2 of the periodic table.

1.0 g of magnesium reacted with chlorine to produce magnesium chloride.

$\mathbf{0}$	$\mathbf{1}$	A	Which types of element react when magnesium reacted with chlorine?

Tick (\checkmark) one box.

A metal and a metal

A metal and a non-metal

A non-metal and a non-metal

| $\mathbf{0}$ | $\mathbf{1}$ | .2 |
| :--- | :--- | :--- | Write the word equation for the reaction when magnesium reacts with chlorine.

| 0 | 1 | 3 |
| :--- | :--- | :--- | What apparatus was used to measure the mass of 1.0 g of magnesium?

Tick (\checkmark) one box.

Ruler

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$ What mass of magnesium chloride was produced?

Tick (\checkmark) one box.

Less than 1.0 g

1.0 g

More than 1.0 g

Calculate the percentage mass of magnesium in magnesium oxide (MgO).
Relative atomic mass $\left(A_{r}\right): \quad \mathrm{Mg}=24$
Relative formula mass $\left(M_{r}\right): \quad \mathrm{MgO}=40$
\qquad
\qquad
\qquad
Percentage mass of magnesium $=$ \qquad \%

Question 1 continues on the next page

Magnesium carbonate decomposes to produce magnesium oxide and carbon dioxide.
The word equation for the reaction is:

$$
\text { magnesium carbonate } \rightarrow \text { magnesium oxide }+ \text { carbon dioxide }
$$

Four students heated 2.00 g of magnesium carbonate for 10 minutes.
Table 1 shows the results.

Table 1

Mass of carbon dioxide produced in g				
Student 1	Student 2	Student 3	Student 4	Mean
0.97	0.91	0.50	0.95	\mathbf{X}

| $\mathbf{0}$ | $\mathbf{1} .6$ What is the most likely reason for Student 3's anomalous result? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

The student heated more than 2.00 g of magnesium carbonate.

The student heated the magnesium carbonate for less than 10 minutes.

The student used a higher temperature.

0	1	$\mathbf{7}$

Do not use the anomalous result.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
$X(2$ significant figures $)=\quad \mathrm{g}$
Turn over for the next question

$\mathbf{0}$	$\mathbf{2}$

0	2	1
$\mathbf{1}$	Complete the sentence.	

Choose the answer from the box.

gaseous	molten	solid

Copper chloride can conduct electricity when in solution or when \qquad .

Figure 1 shows the apparatus used for the electrolysis of copper chloride solution.
Figure 1

There are four ions in copper chloride solution:

- Cu^{2+}
- Cl^{-}
- H^{+}
- OH^{-}

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ Why do Cl^{-}ions and OH^{-}ions move to the positive electrode?

\qquad
\qquad

| 0 | 2 | 3 | Where do the H^{+}and OH^{-}ions come from in the electrolysis of |
| :--- | :--- | :--- | :--- | copper chloride solution?

Tick (\checkmark) one box.

Air

Copper chloride \square
Water

| 0 | 2 | 4 |
| :--- | :--- | :--- | Which ion produces a metal?

Tick (\checkmark) one box.
Cu^{2+}

Cl^{-}

H^{+}

OH^{-}

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	Figure $\mathbf{2}$ shows the apparatus during the electrolysis of copper chloride solution.

Figure 2

Describe what is seen at each electrode during the electrolysis of copper chloride solution.

Positive electrode \qquad
\qquad
Negative electrode \qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6} 500 \mathrm{~cm}^{3}$ of copper chloride solution contains 6.50 g of copper chloride.

Calculate the mass of copper chloride in $40.0 \mathrm{~cm}^{3}$ of this copper chloride solution.
[2 marks]
\qquad
\qquad
\qquad
Mass = \qquad

| $\mathbf{0}$ | $\mathbf{3} \quad$ Carbon can exist in a number of different structures. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ What is the approximate radius of a carbon atom?

Tick (\checkmark) one box.
0.1 m \square
0.1 mm \square 0.1 nm \square

0	3	2
2	Figure 3 shows an atom of carbon.	

Figure 3

Describe the atomic structure of this carbon atom.
You should include the number of electrons, neutrons and protons.
\qquad

In graphite the carbon atoms are held together by bonds.
Figure 4 represents part of the structure of graphite.
Figure 4

0	3	3	$H o w ~ m a n y ~ b o n d s ~ d o e s ~ e a c h ~ c a r b o n ~ a t o m ~ h a v e ~ i n ~ g r a p h i t e ? ~$

Use Figure 4.
Tick (\checkmark) one box.
1

2

3

4

| $\mathbf{0}$ | $\mathbf{3} .4$ | What type of bonds hold the carbon atoms together in graphite? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Covalent \square

Ionic

Metallic \square

0	$\mathbf{3} .5$	Lubricants allow objects to slide over each other easily.

Suggest why graphite can be used as a lubricant.
Use Figure 4.
\qquad
\qquad

0	$\mathbf{3} .6$	

Draw one line from each structure to the form of carbon.

Structure

Buckminsterfullerene

$\mathbf{0}$	$\mathbf{4}$	Sodium and potassium are Group 1 elements.

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{1}$ What is the name of Group 1 elements?

Tick (\checkmark) one box.

Alkali metals

Halogens

Noble gases

0	4	2

Figure 5

What is the melting point of sodium?

Melting point of sodium = \qquad ${ }^{\circ} \mathrm{C}$

0	4	3	3

Balance the equation for the reaction.
$\mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{H}=1 \quad \mathrm{O}=16 \quad \mathrm{Na}=23$
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ \qquad

0	$\mathbf{4}$	$\mathbf{5}$	Sodium and potassium both react with water.

Figure 6 shows sodium reacting with water.
Figure 6

Compare what is seen when sodium reacts with water and when potassium reacts with water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question

| $\mathbf{0}$ | $\mathbf{5} \quad$ A student investigated the change in temperature when different masses of zinc were |
| :--- | :--- | added to copper sulfate solution.

This is the method used.

1. Measure the volume of copper sulfate solution using a measuring cylinder.
2. Pour the copper sulfate solution into a metal container.
3. Add 2 g of zinc.
4. Measure the temperature of the solution.
5. Repeat steps 1 to 4 with different masses of zinc.

Figure 7 shows the apparatus.
Figure 7

0	5	1	Give three improvements to the investigation to make the results more accurate.

1
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

0	5	2

Figure 8

What is the volume of copper sulfate solution in Figure 8?

Volume $=$ \qquad cm^{3}

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$ When zinc was added to copper sulfate solution the temperature increased. l . ${ }^{2}$.

Figure 9 shows the reaction profile.
Figure 9

What type of reaction is shown in Figure 9?
Tick (\checkmark) one box.
Endothermic \square Exothermic \square Neutralisation \square

Figure 10 shows the results.
Figure 10

0	5	4

Use the equation:

$$
\text { gradient }=\frac{\text { increase in temperature in }{ }^{\circ} \mathrm{C}}{\text { increase in mass in grams }}
$$

\qquad
\qquad
\qquad
\qquad
Gradient $=$ \qquad ${ }^{\circ} \mathrm{C}$ per g

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$

Use Figure 10.
You should extend the graph line.
\qquad
\qquad
\qquad

Turn over for the next question

0	6	This question is about the periodic table.

0	6	1
Figure		
11	shows part of Mendeleev's version of the periodic table.	

Figure 11

H												
Li	Be	B		C			N		0		F	
Na	Mg	Al		Si			P		S		Cl	
				i			As	Cr	Se		Br	FeCoNi
$\begin{array}{\|ll\|} \hline \mathrm{Rb} & \\ & \mathrm{Ag} \\ \hline \end{array}$		Y		$2 r$		Nb	Sb	Mo	Te			Ru Rh Pd

Which group of elements had not been discovered when Mendeleev's version of the periodic table was published?

Figure 12 represents different models of the atom.
Figure 12

A

B

C

D

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{2}$ Which model represents the plum pudding model? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
A \square
B

C

D \square

| $\mathbf{0}$ | $\mathbf{6}$. $\mathbf{3}$ Which model resulted from Chadwick's experimental work? |
| :--- | :--- | :--- | :--- | Tick (\checkmark) one box.

A

B

C

D \square

Question 6 continues on the next page

Potassium has different isotopes.

| $\mathbf{0}$ | $\mathbf{6} .4$ What is meant by 'isotopes'? |
| :--- | :--- | :--- |

You should refer to subatomic particles.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6} .5$ Table 2 shows the mass numbers and the percentage abundance of two |
| :--- | :--- | :--- | isotopes of potassium.

Table 2

Mass number	Percentage abundance
$\mathbf{3 9}$	93.1
$\mathbf{4 1}$	6.9

Calculate the relative atomic mass $\left(A_{r}\right)$ of potassium.
Give your answer to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
\qquad
Relative atomic mass (1 decimal place) $=$ \qquad
Turn over for the next question

$\mathbf{0}$	$\mathbf{7}$	Acids react to produce salts.

Universal indicator is added to water and then nitric acid is added to the mixture.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ Give the colour change when nitric acid is added to the mixture of |
| :--- | :--- | :--- | universal indicator and water.

Tick (\checkmark) one box.

Blue to red

Green to purple

Green to red

Red to purple

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ What happens to the pH of water when nitric acid is added?

Tick (\checkmark) one box.

Decreases

Stays the same

Increases

| 0 | $\mathbf{7}$ | $\mathbf{3}$ What is the state symbol for nitric acid? |
| :--- | :--- | :--- | :--- |

\qquad
Zinc carbonate reacts with nitric acid.
The word equation for the reaction is:
zinc carbonate + nitric acid \rightarrow zinc nitrate + water + carbon dioxide
white solid
colourless
solution

| 0 | 7 | 4 |
| :--- | :--- | :--- | until the zinc carbonate is in excess.

[2 marks]
1 \qquad
\qquad
2 \qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$	The formula of the zinc ion is Zn^{2+}

The formula of the nitrate ion is $\mathrm{NO}_{3}{ }^{-}$

What is the formula for zinc nitrate?
Tick (\checkmark) one box.
$\mathrm{ZnNO}_{3} \quad \square$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \square$
$\mathrm{Zn}_{2} \mathrm{NO}_{3}$ \square
$\mathrm{Zn}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ \square

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{6}$ Acids react with insoluble metal oxides to produce salts.

Plan a method to produce a pure, dry sample of the soluble salt copper chloride from an acid and a metal oxide.
\qquad

END OF QUESTIONS

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

