

Please write clearly ir	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

AS CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Section B			
TOTAL			

	Section A	Do not write outside the box
	Answer all questions in this section.	
0 1	This question is about atomic structure.	
0 1.1	Figure 1 is a model proposed by Rutherford to show the structure of an atom.	
	Figure 1	
	Positive nucleus Negative electron	
	State two features of the current model that are not shown in the Rutherford model. [2 marks]	
	Feature 1 of the current model	
	Feature 2 of the current model	

0 1.2

A sample of tin is analysed in a time of flight mass spectrometer. The sample is ionised by electron impact to form 1+ ions.

Table 1 shows data about the four peaks in this spectrum.

m/z	Percentage abundance
112	22.41
114	11.78
117	34.97
120	To be determined

Table 1

Give the symbol, including mass number, of the ion that reaches the detector first.

Calculate the relative atomic mass of tin in this sample. Give your answer to 1 decimal place.

[4 marks]

Do not write outside the

box

Symbol of ion

Relative atomic mass

Turn over ►

6

			Do not write
02	This question is about magnesium and its compounds.		Do not write outside the box
02.1	State one observation when magnesium reacts with steam.		
	Give an equation, including state symbols, for this reaction.	[2 marks]	
	Observation		
	Equation		
02.2	Describe the bonding in magnesium.	[2 marks]	
02.3	Explain, in terms of structure and bonding, why magnesium chloride has a high melting point.	[3 marks]	
02.4	Give one medical use for magnesium hydroxide.	[1 mark]	
			8

			Do not wri outside th
0 3	This question is about redox reactions.		box
03.1	State, in terms of electrons, the meaning of the term oxidising agent.	[1 mark]	
0 3.2	$Cr_2O_7{}^{2-}$ can oxidise $SO_3{}^{2-}$ in acidic conditions to form Cr^{3+} and $SO_4{}^{2-}$		
	Deduce a half-equation for the oxidation of SO_3^{2-} to SO_4^{2-}		
	Deduce a half-equation for the reduction of $Cr_2O_7^{2-}$ to Cr^{3+}		
	Deduce the overall equation for the oxidation of SO_3^{2-} by $Cr_2O_7^{2-}$	[3 marks]	
	Half-equation for the oxidation of SO_3^{2-} to SO_4^{2-}		
	Half-equation for the reduction of $Cr_2O_7^{2-}$ to Cr^{3+}		
	Overall equation		
			4
	Turn over for the next question		
		Turn over ►	

		number of test-tube reactions of			
	Table 2 shows the student's observations.				
		Table 2			
	Test 1	Test 2	Test 3		
	Add H ₂ SO ₄ (aq)	Warm with NaOH(aq)	Add acidified AgNO ₃ (aq)		
A	white precipitate	no visible change	no visible change		
В	effervescence	a gas is formed that turns damp red litmus blue	effervescence		
с	no visible change	no visible change	off-white precipitate		
. 1		the positive ion in solution A . equation for the formation of the	e white precipitate in [2 mark		
4.1	Give the simplest ionic Test 1 for solution A . Identity of positive ion i	equation for the formation of the			
4.1	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form	equation for the formation of the	[2 mark		
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation	equation for the formation of the	[2 mark		
4.1	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of	equation for the formation of the	[2 mark		
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of Give the simplest ionic	equation for the formation of the	[2 mark rest 1 and in Test 2. e gas in Test 2. [2 mark		
	Give the simplest ionic Test 1 for solution A . Identity of positive ion in Ionic equation Different gases are form Suggest the identity of Give the simplest ionic Gas formed in Test 1 _	equation for the formation of the	[2 mark rest 1 and in Test 2. e gas in Test 2. [2 mark		

04.3	The student thinks that solution ${f C}$ contains either chloride ions or bromide ions.	Do not write outside the box
	Describe a further test, or tests, to show whether solution C contains chloride or bromide ions.	
	[3 marks]	
		7
	Turn over for the next question	
	Turn over ►	

0 5	This question is about chlorine.	Do not write outside the box
0 5 1	Chlorine has a low boiling point because the forces between the molecules are weak.	
	Explain how these forces arise between molecules of chlorine. [3 marks]	
0 5.2	Give an equation for the reaction of chlorine with water.	
	Give a reason why chlorine is added to drinking water. [2 marks]	
	Equation	
	Reason	
0 5.3	Chlorine reacts with cold, aqueous sodium hydroxide in the manufacture of bleach.	
	Give an equation for this reaction. [1 mark]	
		6

Calcium sulfide reacts with calcium sulfate as shown.

 $CaS + 3CaSO_4 \rightarrow 4CaO + 4SO_2$

2.50 g of calcium sulfide are heated with 9.85 g of calcium sulfate until there is no further reaction.

Show that calcium sulfate is the limiting reagent in this reaction.

Calculate the mass, in g, of sulfur dioxide formed.

 $M_{\rm r}$ (CaS) = 72.2 $M_{\rm r}$ (CaSO₄) = 136.2

0 6

[5 marks]

Mass of sulfur dioxide

Turn over for the next question

5

g

Turn over ►

0 7	This question is about combustion.	Do not write outside the box
07.1	State the meaning of the term standard enthalpy of combustion. [2 marl	ks]
0 7 2	A student does an experiment to determine the enthalpy of combustion of propan-1- (CH ₃ CH ₂ CH ₂ OH, M_r = 60.0). Combustion of 0.497 g of propan-1-ol increases the temperature of 150 g of water from 21.2 °C to 35.1 °C	-ol
	Calculate a value, in kJ mol ⁻¹ , for the enthalpy of combustion of propan-1-ol in this experiment.	
	The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$ [3 marl	ks]
	Enthalpy of combustion kJ mo	I ^{−1}

A student is provided with a 5.60 g sample of ethanoic acid (CH₃COOH) contaminated with sodium ethanoate (CH₃COONa).

The student dissolves the sample in deionised water and makes the volume up to 200 cm³

The student removes 25.0 cm³ samples of the solution and titrates them with 0.350 mol dm⁻³ sodium hydroxide solution.

Table 3 shows the results of these titrations.

Table 3

	Rough	1	2	3
Final volume / cm ³	20.85	41.10	20.50	40.80
Initial volume / cm ³	0.00	20.85	0.00	20.50
Titre / cm ³	20.85	20.25	20.50	20.30

0 8 . 1

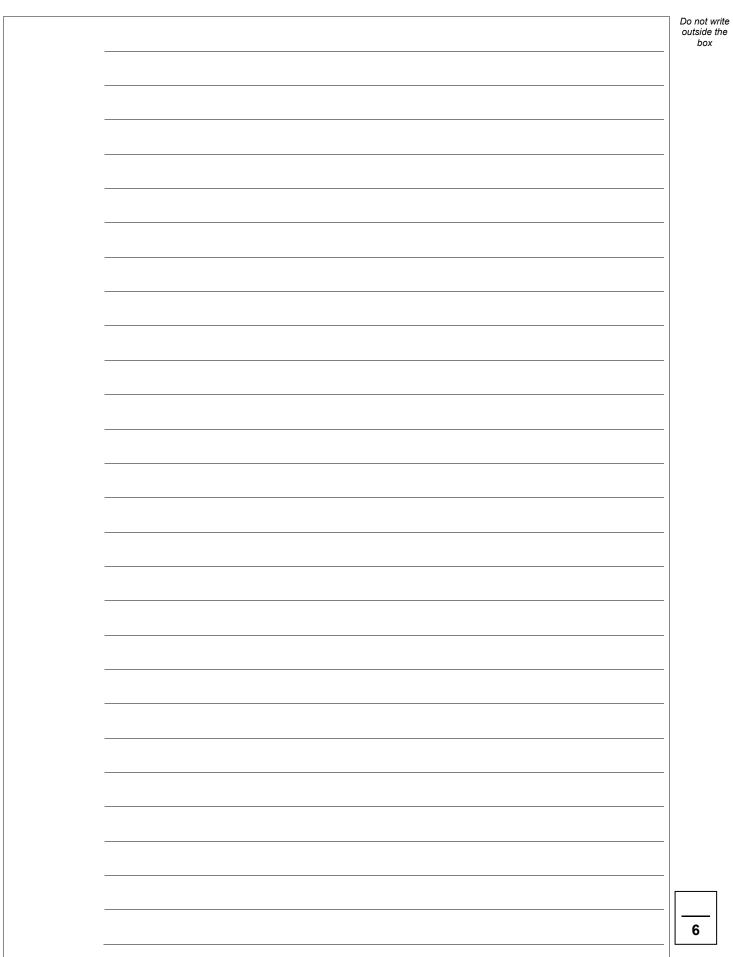
0 8

Use the results in Table 3 to calculate the mean titre value.

Use the mean titre to calculate the percentage by mass of sodium ethanoate in the original sample.

[6 marks]

Mean titre value	cm ³



		Do not write outside the box
	Percentage by mass	
08.2	The student rinses the burette with deionised water before filling with sodium hydroxide solution. State and explain the effect, if any, that this rinsing will have on the value of the titre. [2 marks]	
		8
	Turn over for the next question	
	Turn over ►	I

		Do not write outside the
09	Hydrogen can be prepared on an industrial scale using the reversible reaction between methane and steam.	box
	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3 H_2(g)$ $\Delta H = +206 \text{ kJ mol}^{-1}$	
	The reaction is done at a temperature of 800 °C and a low pressure of 300 kPa in the presence of a nickel catalyst.	
	Explain, in terms of equilibrium yield and cost, why these conditions are used. [6 marks]	
	· · · · · · · · · · · · · · · · · · ·	

	D
Sulfur dioxide reacts with oxygen to form sulfur trioxide.	Do not write outside the box
$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$ $\Delta H = -196 \mathrm{kJ mol^{-1}}$	
Give an expression for the equilibrium constant (K_c) for this reaction. [1 mark]	
Kc	
A mixture of sulfur dioxide and oxygen is allowed to reach equilibrium in a container of volume 1800 cm^3 at temperature <i>T</i> .	
At equilibrium, the mixture contains 0.176 mol of sulfur dioxide and 0.461 mol of sulfur trioxide.	
At temperature T the equilibrium constant, $K_c = 15.0 \text{ mol}^{-1} \text{ dm}^3$	

Calculate the amount, in moles, of oxygen at equilibrium.

[3 marks]

Amount of oxygen_____

mol

1 0

1

0.

0.2

1

1

Do not write outside the box

17

1 0 . 3 At a different temperature, a mixture contains 0.025 mol of sulfur dioxide 0.049 mol of oxygen 0.034 mol of sulfur trioxide.

The total pressure of the mixture in a 3500 cm³ reaction vessel is 255 kPa

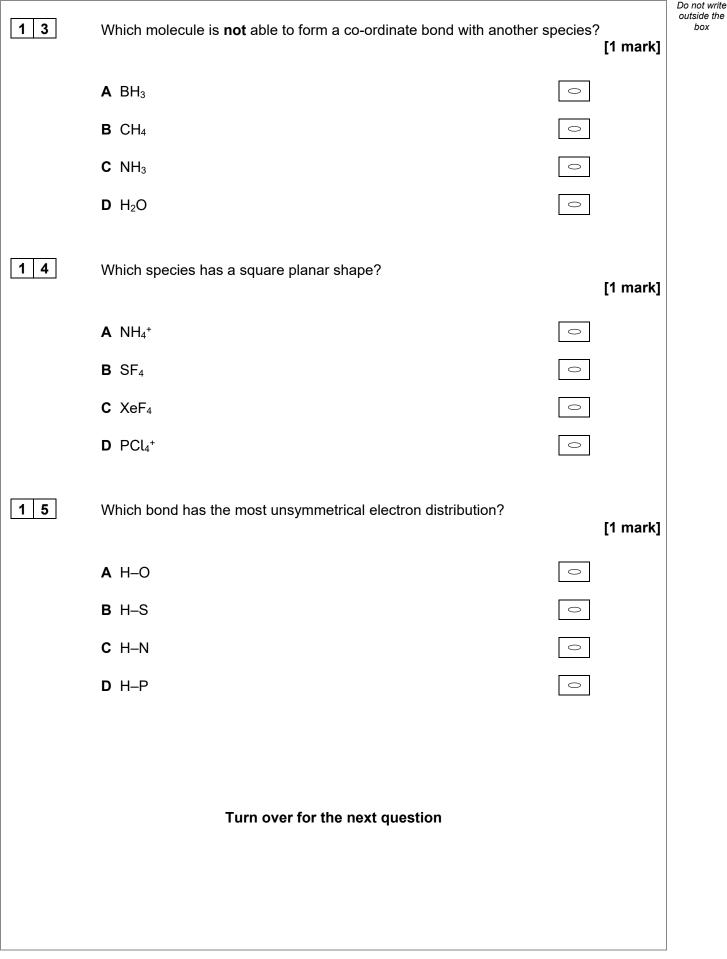
Use the data to calculate the temperature, in °C, of the mixture.

The ideal gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks]

Temperature _____

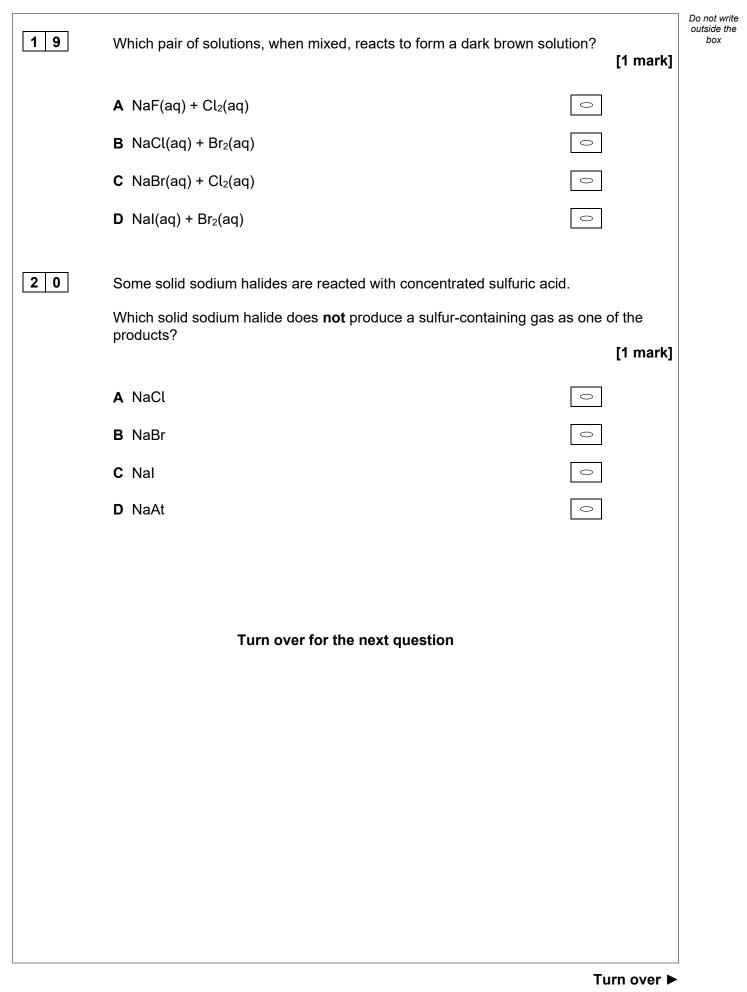
Turn over for Section B

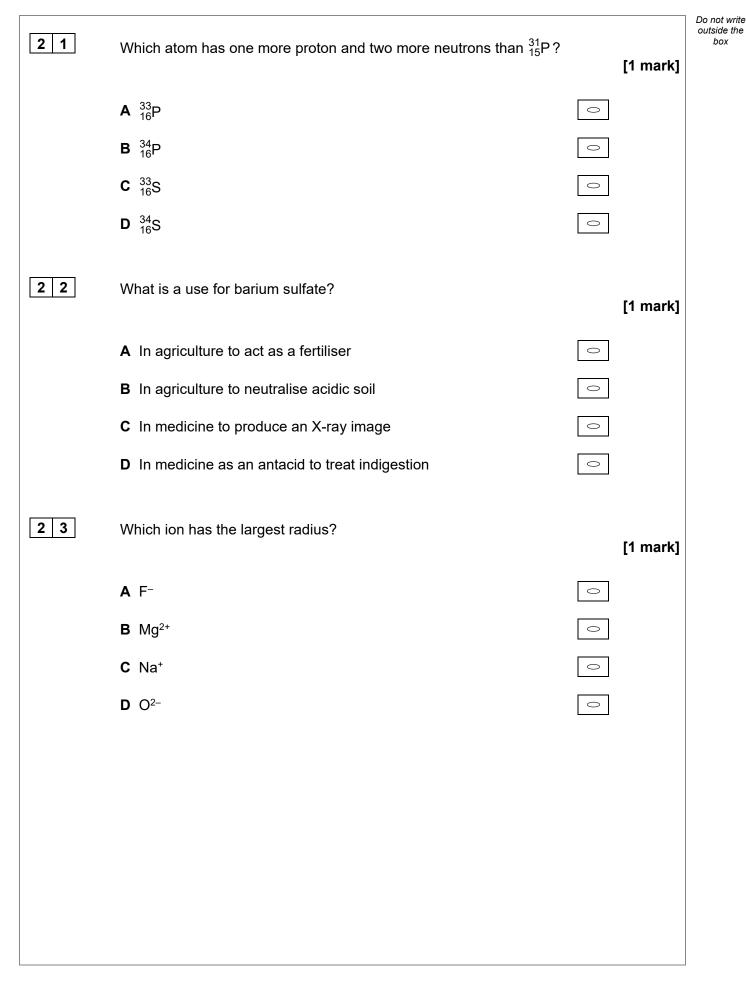

Turn over ►

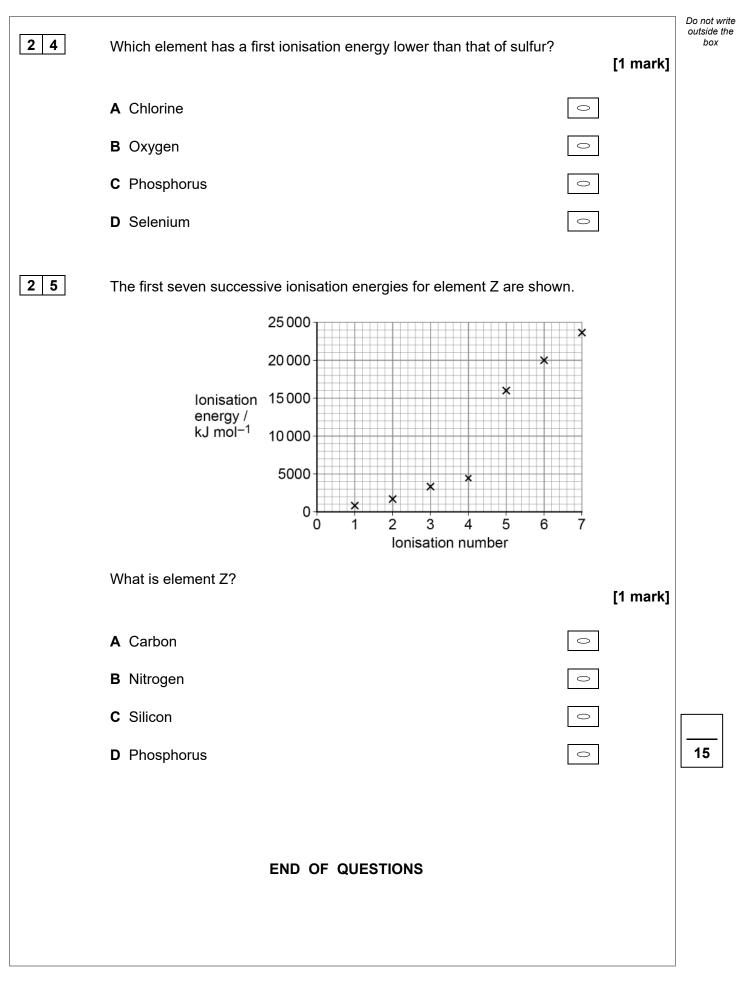
°C

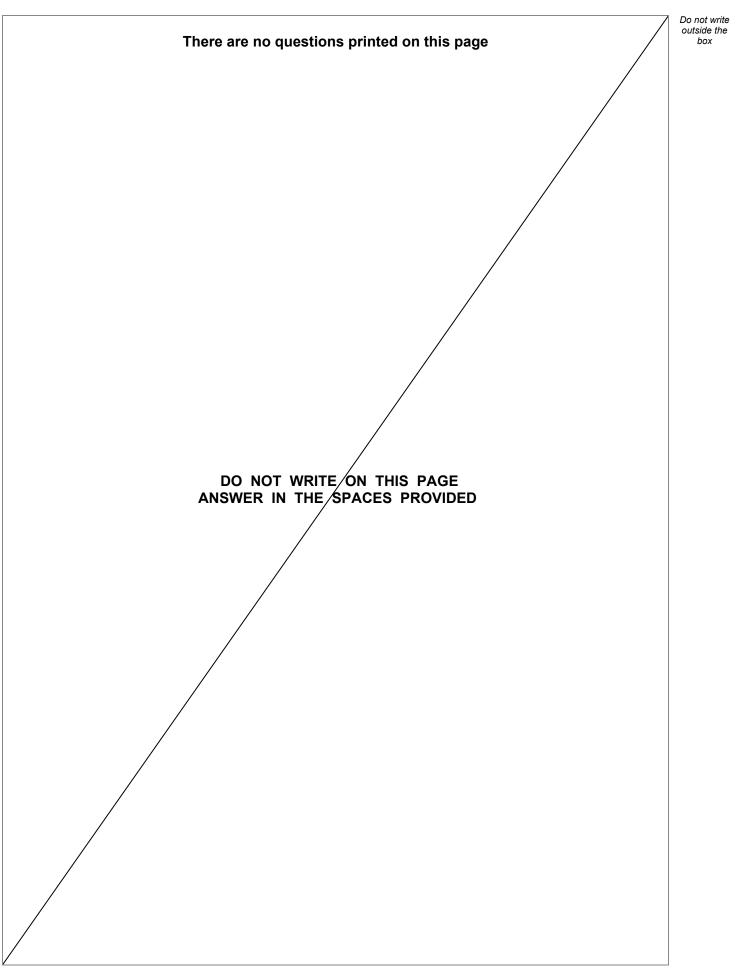
9

	Section B	
	Answer all questions in this section.	
-	e answer per question is allowed. answer completely fill in the circle alongside the appropriate answer	
ORRECT M	ETHOD WRONG METHODS 🐼 💿 🚓 🗹	
f you wa	nt to change your answer you must cross out your original answer a	s shown. 💌
lf you wis as showr	sh to return to an answer previously crossed out, ring the answer you n.	now wish to select
	do your working in the blank space around each question but this w se additional sheets for this working.	ill not be marked.
1	In a time of flight mass spectrometer, molecule X is ionised using electrospray ionisation.	J
	What is the equation for this ionisation?	[1 mark]
	$\textbf{A} \hspace{0.2cm} X(I) + e^{-} \rightarrow X^{\scriptscriptstyle +}(g) + 2 e^{-}$	0
	B $X(g) + e^- \rightarrow X^+(g) + 2e^-$	0
	C $X(I) + H^+ \rightarrow XH^+(g)$	0
	D $X(g) + H^+ \rightarrow XH^+(g)$	0
2	What is the electron configuration of V^{2+} in the ground state?	
		[1 mark]
	A $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$	0
	B $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$	0
	C $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$	0

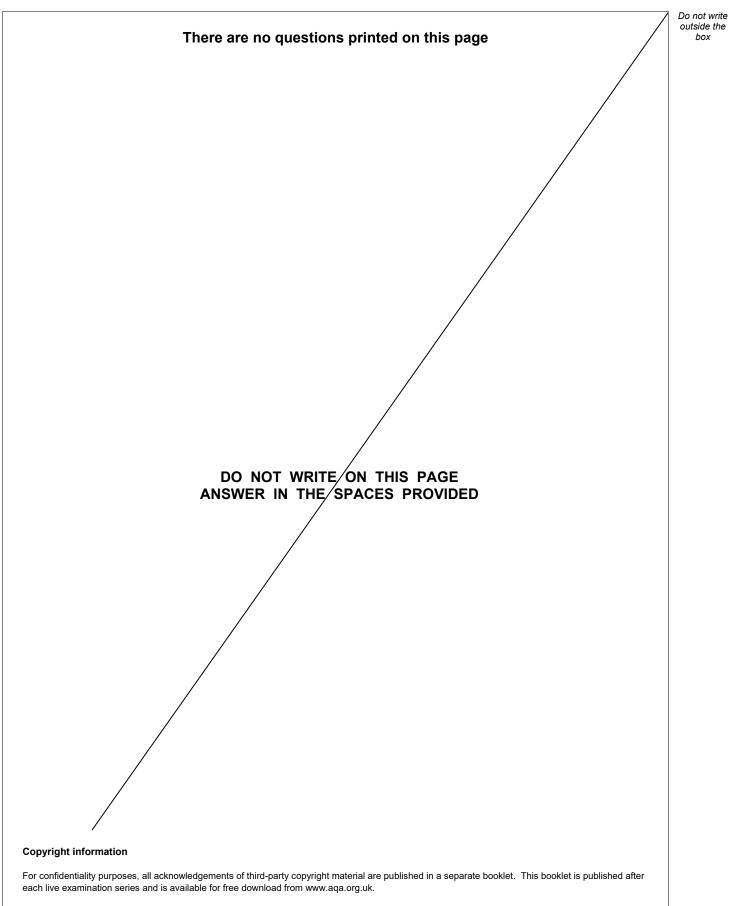



1 6	Which compound contains a chlorine atom with an oxidation state of +	12		Do not write outside the box
		4:	[1 mark]	
	A KClO ₄	0		
	B CCl ₄	0		
	C ClO ₂	0		
	D ClO ₂ F	0		
1 7	Which element is classified as a d block element?		[1 mark]	
	A Antimony	0		
	B Molybdenum	0		
	C Strontium	0		
	D Uranium	0		
1 8	Which element in Period 3 has the highest melting point?		[1 mark]	
	A Aluminium	0		
	B Silicon	0		
	C Sodium	0		
	D Sulfur	0		




IB/M/Jun21/7404/1

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

IB/M/Jun21/7404/1