$A Q A$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

BIOLOGY

Paper 2

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

Answer all questions in the spaces provided.		
	The general structure of a fatty acid is RCOOH .	
	Name the group represented by COOH .	
		[1 mark]
0 1	Figure 1 shows the structure of a fatty acid R group.	
	Figure 1	
	Name the type of R group shown in Figure 1.	
	Explain your answer.	[2 mark
	Type of R group	
	Explanation	

 membrane. Figure 2 shows the membrane structure the scientists suggested.

Figure 2

| 0 | 1 | 4 | Give one similarity and two differences between the membrane structure shown in |
| :--- | :--- | :--- | :--- | Figure 2 and the fluid-mosaic model of membrane structure.

Similarity
\qquad

Difference 1 \qquad
\qquad
Difference 2 \qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ Describe and explain one feature of the alveolar epithelium that makes the epithelium |
| :--- | :--- | :--- | well adapted as a surface for gas exchange. Do not refer to surface area or moisture in your answer.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doctors measure the health of lungs by calculating the $\mathrm{FEV}_{1}: \mathrm{FVC}$ ratio.

- FEV_{1} is the maximum volume of air exhaled in one second.
- FVC is the maximum volume of air exhaled in one breath.

The minimum $\mathrm{FEV}_{1}:$ FVC ratio of healthy lungs is $0.7: 1$
A man with the lung disease emphysema inflated his lungs fully. He then exhaled as much of this air as quickly as possible in one breath. Figure 3 shows how the volume of exhaled air changed during this breath.

Figure 3

| $\mathbf{0}$ | $\mathbf{2} .2$ Use the information provided to determine the $\mathrm{FEV}_{1}:$ FVC ratio of this man's lungs. |
| :--- | :--- | :--- |

Go on to determine how many times greater the minimum ratio of healthy lungs is than his ratio.
\qquad
How many times greater? \qquad
Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Tidal volume is the volume of air inhaled and exhaled during a single breath when a |
| :--- | :--- | :--- | :--- | person is resting. The tidal volume in a person with emphysema is reduced compared with the tidal volume in a healthy person.

Suggest and explain how a reduced tidal volume affects the exchange of carbon dioxide between the blood and the alveoli.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question
 name.

What term is used to describe this method of naming organisms?
[1 mark]
\qquad

0	3	2

\qquad
\qquad
\qquad

0	3	3	Figure 4 shows how the species Spartina townsendii is produced.

The number of chromosomes in cells is shown in some of the boxes.
Figure 4

Complete Figure 4 by giving the correct number of chromosomes in each of the boxes.

A mutation in the number of chromosomes in a S. townsendii cell produced a new
species, Spartina anglica. species, Spartina anglica.

Figure 5 shows the number of chromosomes in leaf cells of these species.
Figure 5
S. townsendii
S. anglica
61
122

| 0 | 3 | 4 | Name the type of mutation that changed the number of chromosomes in S. townsendii |
| :--- | :--- | :--- | :--- | to produce S. anglica. Explain your answer.

Name of mutation
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | 5 |
| :--- | :--- | :--- | the independent segregation of homologous chromosomes.

Apart from mutation, explain one other way genetic variation within a species is increased.
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathrm{l}$ | Give two structures found in all prokaryotic cells and in all eukaryotic cells. |
| :--- | :--- | :--- | :--- |
| | | 1 |

All prokaryotic cells contain a circular DNA molecule and some prokaryotic cells contain plasmids.

| 0 | $\mathbf{4} .2$ | Scientists have found that the rate of plasmid replication is faster in cells growing in a |
| :--- | :--- | :--- | culture with a high concentration of amino acids than in a culture with a lower concentration of amino acids.

Suggest one explanation for the faster rate of plasmid replication in cells growing in a culture with a high amino acid concentration.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 4 continues on the next page

A scientist prepared a culture of a bacterial species.

- She extracted the plasmids and the circular DNA molecules from a sample of cells taken from this culture (A).
- She then added antibiotic \mathbf{X} to the culture and let the cells divide for 4 hours.
- She then extracted the plasmids and the circular DNA molecules from a sample of these cells (B).
- The scientist separated the plasmids from the circular DNA molecules in \mathbf{A} and in \mathbf{B} using ultracentrifugation.

Figure 6 shows her results.
Figure 6

$\begin{array}{lll}0 & 4 & 3\end{array}$ plasmids and the circular DNA? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 4 | What can you conclude from Figure 6 about the effect of antibiotic X on plasmid |
| :--- | :--- | :--- | :--- | replication and on circular DNA replication? Explain your answer.

\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- | A student investigated the activity of the enzyme amylase. He cut three identical wells

(D, E and F) in starch-agar in a Petri dish. He added $0.2 \mathrm{~cm}^{3}$ of:

- amylase solution to well D
- boiled amylase solution to well E
- water to well \mathbf{F}.

After 60 minutes, he covered the starch-agar with iodine solution. Figure 7 shows his results.

Figure 7

$\mathbf{0}$	$\mathbf{5} .1$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} .2$ | What can you conclude about the activity of amylase from the appearance of the agar |
| :--- | :--- | :--- | surrounding well E and well F in Figure 7?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{5} . & \mathbf{3} \text { The student cut out a piece of agar from the clear area surrounding well } \mathbf{D} \text {. He }\end{array}$ obtained a solution of the substances contained in this piece of agar.

Describe a different biochemical test the student could use with this solution to confirm that amylase had affected the starch in the clear area surrounding well D.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

Table 1

Amylase solution $/ \mathbf{~ c m}^{3}$	Water $/ \mathbf{~ c m}^{3}$
1.6	2.4

He prepared a starch-agar Petri dish identical to Figure 7, but with a single well. He added $0.2 \mathrm{~cm}^{3}$ of the diluted amylase solution to this well and left the Petri dish for 60 minutes.
$\begin{array}{lll}0 & 5 & 4 \\ 4 & \text { Use all of this information to predict the diameter of the clear area that will form around }\end{array}$ the well containing the diluted amylase solution.

Give your answer to the nearest whole number.
Show your working.

Answer \qquad mm

| $\mathbf{0}$ | $\mathbf{5} \cdot 5$ The student used a ruler to measure the diameter in mm of the clear area around |
| :--- | :--- | :--- | :--- | well \mathbf{D} in Figure 7.

Use this information to explain why the answer to Question 05.4 should be given to the nearest whole number.
[1 mark]
\qquad
\qquad
\qquad
Turn over for the next question Turn over

$\mathbf{0}$	$\mathbf{6}$	The fruit fly is a species of small insect.

The fruit fly has a gene that codes for an enzyme called alcohol dehydrogenase (AD). AD catalyses the breakdown of alcohol when alcohol is in the insects' food.

The gene coding for $A D$ has two alleles, $A D^{F}$ and $\mathbf{A D}^{\mathbf{S}}$.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{1}$ The enzyme encoded by the $A D^{F}$ allele catalyses the breakdown of alcohol faster |
| :--- | :--- | :--- | than the enzyme encoded by the AD s allele. Suggest why.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A scientist took a random sample of adult fruit flies from a population. He measured the frequency of the $A D^{F}$ allele in this sample (generation 0). He then:

- selected 100 of these insects at random and kept them in a container
- fed the insects food containing alcohol
- let the insects reproduce
- repeated these steps for 45 generations of fruit fly reproduction.

The scientist measured the frequency of the $A D^{F}$ allele in the 45 th generation.

0	6	2
2	Suggest why the scientist took his sample from the population at random.	

\qquad
\qquad
\qquad
Table 2 shows the scientist's results.

Generation of fruit fly reproduction	Frequency of $\mathbf{A D}^{\mathbf{F}}$
0	0.20
45	0.74

| $\mathbf{0}$ | 6 | .3 Alcohol is toxic to fruit flies. Suggest and explain why the frequency of the $A D^{F}$ allele |
| :--- | :--- | :--- | changed during the 45 generations.

\qquad

0	6	4
Identify the type of selection investigated in the 45 generations of fruit fly reproduction.		

No selection

Directional selection

Random selection

Stabilising selection

0	7	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A scientist investigated the effect of cyanide on the rate of amino acid uptake in two types of Escherichia coli, G and H.

- G cells produce enzymes involved in ATP production only on their cell-surface membrane.
- H cells produce enzymes involved in ATP production on their cell-surface membrane and in their cytoplasm.

Figure 8 shows her results.
Figure 8

| 0 | 7 | 2 |
| :--- | :--- | :--- | Use Figure 8 to calculate the percentage decrease in the rate of amino acid absorption by \mathbf{H} cells in $30 \mathrm{mmol} \mathrm{dm}^{-3}$ cyanide solution.

| $\mathbf{0}$ | $\mathbf{7}$. | 3 |
| :--- | :--- | :--- | Using Figure 8 and the information provided, what can you conclude about amino acid uptake by \mathbf{G} cells and by \mathbf{H} cells?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 8 | A scientist investigated a sequence of reactions catalysed by two enzymes, GOx and |
| :--- | :--- | :--- | HRP. Figure 9 shows this sequence of reactions.

Figure 9

| 0 | 8. | 1 |
| :--- | :--- | :--- | Use Figure 9 to identify all of the products formed when this sequence of reactions is completed.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .2$ The scientist joined DNA molecules together to make tiny cages. The cages are |
| :--- | :--- | :--- | exactly 20 nm long, 20 nm wide and 17 nm deep.

He trapped one GOx molecule and one HRP molecule together in each cage. The GOx molecule and HRP molecule fill 9% of the cage volume.

The volume of a GOx molecule is eight times larger than an HRP molecule.
Use this information to calculate the volume of a GOx molecule. Give the appropriate unit with your answer.

Show your working.
\qquad
Question 8 continues on the next page

The scientist investigated the activity of GOx and HRP enzymes when they are:

- trapped inside cages (\mathbf{T}) and
- not trapped (NT), but free in solution with no cages.

Figure 10 shows his results.
The error bars show ± 2 standard deviations.
± 2 standard deviations include 95% of the data.
Figure 10

\qquad inside cages?

| 0 | 8 | 4 |
| :--- | :--- | :--- | Suggest a suitable control.

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$	Explain five properties that make water important for organisms.

\qquad

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ Describe the process of semi-conservative replication of DNA.

\qquad
There are no questions printed on this page

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

