

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level PHYSICS

Paper 3
Section B

Engineering physics

Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

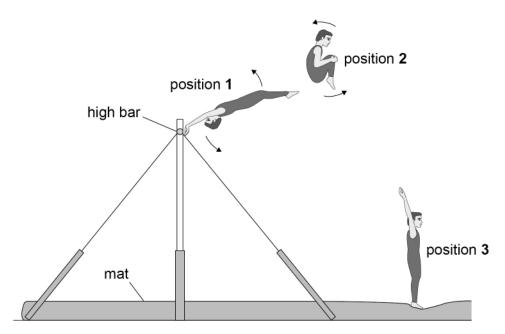
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
TOTAL	

Section B


Answer all questions in this section.

0 1

A gymnast dismounts from an exercise in which he swings on a high bar. The gymnast rotates in the air before landing.

Figure 1 shows the gymnast in three positions during the dismount.

Figure 1

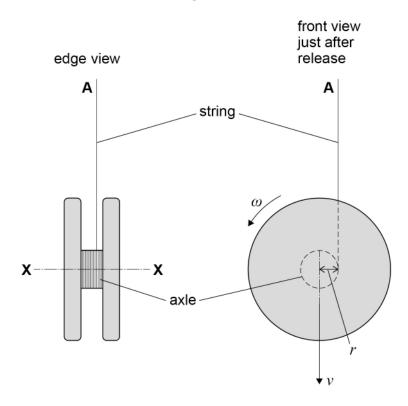
The arrows show the direction of rotation of the gymnast.

In position 1 the gymnast has just let go of the bar. His body is fully extended.

Position **2** shows the rotating gymnast a short time later. His knees have been brought close to his chest into a 'tuck'.

Position 3 is at the end of the dismount as the gymnast lands on the mat. His body is once again fully extended.

0 1.1	Explain why the moment of inertia about the axis of rotation decreases when his knees are moved towards his chest.			
	Go on to explair	the effect this has on his angu	ular speed.	[3 marks]
	-			
	Table 1 gives so	ome data about the gymnast in	position 1 and in position 2 .	
	-	Table 1		
	Position	Moment of inertia / kg m ²	Angular speed / rad s ⁻¹	
	1	13.5	ω	
	2	4.1	14.2	
0 1 . 2	Calculate the an	gular speed ω of the gymnast	in position 1 .	
		3	•	[1 mark]
		o =		$ m rad~s^{-1}$
	G	ω – Question 1 continues on the	next page	rau s


0 1.3	The gymnast stays in the tuck for 1.2 s.	ΟL
	Determine the number of complete rotations performed by the gymnast when in the tuck during the dismount.	
	[2 marks]	
	number of complete rotations =	
0 1.4	The gymnast repeats the exercise. The height of the bar remains unchanged.	
	State and explain two actions the gymnast can take to complete more rotations during the dismount.	
	[4 marks]	
	1	
	2	

0 2

Figure 2 shows a yo-yo made of two discs separated by a cylindrical axle. Thin string is wrapped tightly around the axle.

Figure 2

Initially both the free end **A** of the string and the yo-yo are held stationary.

With **A** remaining stationary, the yo-yo is now released so that it falls vertically. As the yo-yo falls, the string unwinds from the axle so that the yo-yo spins about its centre of mass.

The linear velocity v of the centre of mass of the falling yo-yo is related to the angular velocity ω by $v = r\omega$ where r is the radius of the axle.

Question 2 continues on the next page

0 2 . 1

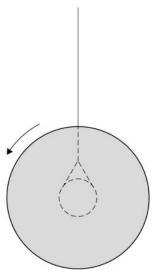
The yo-yo accelerates uniformly as it falls from rest. The string remains taut and has negligible thickness.

mass of yo-yo = $9.2\times10^{-2}~kg$ radius of axle = $5.0\times10^{-3}~m$ moment of inertia of yo-yo about axis **X-X** = $8.6\times10^{-5}~kg~m^2$

When the yo-yo has fallen a distance of 0.50 m, its linear velocity is V.

Calculate V by considering the energy transfers that occur during the fall.

[3 marks]


V =	m c
<i>y</i> —	m s

0 2 . 2

The yo-yo falls further until all the string is unwound. The yo-yo then 'sleeps'. This means the yo-yo continues to rotate in a loose loop of string as shown in **Figure 3**.

Figure 3

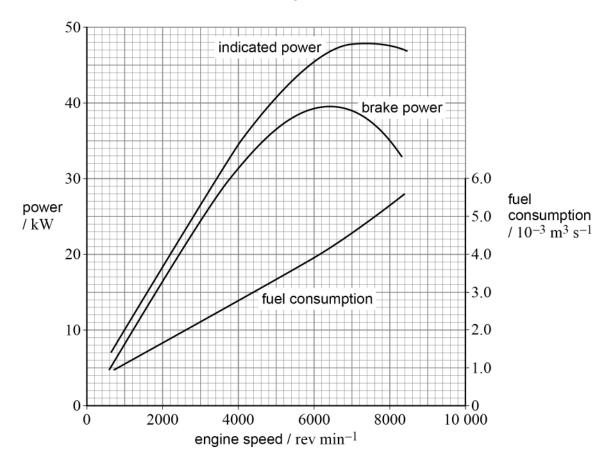
The string applies a constant frictional torque of $8.3\times10^{-4}~N~m$ to the axle. The angular velocity of the yo-yo at the start of the sleep is $145~rad~s^{-1}$.

Determine, in $\rm rad,$ the total angle turned through by the yo-yo during the first $10~\rm s$ of sleeping.

[3 marks]

angle =	rad

6


Turn over ►

0 3

Figure 4 shows the results of a test on an internal combustion engine which uses purified biogas.

Figure 4 shows how the indicated power, brake (or output) power and fuel consumption of the engine vary with the engine speed. The scale on the left-hand axis is power and the scale on the right-hand axis is fuel consumption.

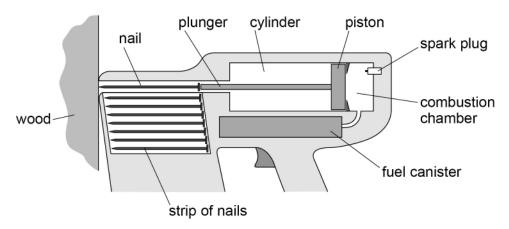
0 3.1	Figure 4 can be used to analyse the performance of the engine.
	Determine, for the speed at which the engine develops its maximum brake power:
	 the overall efficiency the thermal efficiency the mechanical efficiency.
	Go on to explain how knowledge of these efficiencies can be useful to an engineer.
	calorific value of biogas used in the test = $32.3 \times 10^6 \ \mathrm{J \ m^{-3}}$ [6 marks]
	Answer space continues on the next page
	· monor obaco commerce on me news bade

Do not write outside the box

0 3.2	Explain why it is not advisable to run this engine at speeds above $7000 \text{ rev min}^{-1}$. Refer to Figure 4 in your answer.	Do not w outside t box
	[2 marks]	
		8
		_ o

Turn over for the next question

Turn over ▶



Do not write outside the

0 4

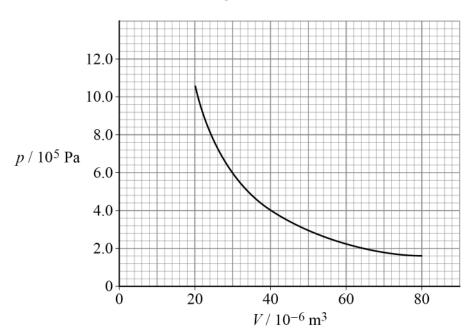
Figure 5 shows a tool for driving nails into wood. Only part of the tool is shown.

Figure 5

Fuel is mixed with air in the combustion chamber and is ignited by a spark. The gas expands rapidly and drives the piston along the cylinder. The plunger attached to the piston drives the nail into the wood.

Table 2 shows the average force needed to drive nails of various lengths completely into a particular type of wood.

Table 2


Nail	Length / mm	Average force / N
Α	32	250
В	38	320
С	45	370
D	50	420
E	63	560

0 4 . 1

Figure 6 shows the variation of pressure p with volume V as the gas expands on the right-hand side of the piston when the correct nail is used.

Figure 6

The combustion chamber has a volume of $20\times10^{-6}~m^3$ and the piston moves through a volume of $60\times10^{-6}~m^3.$

The work done by the expanding gas is just enough to drive the correct nail completely into the wood.

Deduce which nail in **Table 2** is the correct one to use in the tool.

[5 marks]

Question 4 continues on the next page

Turn over ▶

	14		
0 4.2	After a nail has been used, another nail takes its place automatically. drive up to $180\mathrm{nails}$ per minute.	The tool can	Do not write outside the box
	Discuss why the expansion cannot be isothermal.	[3 marks]	
			8

0 5 . 1	Which is a correct statement about an ideal heat engine?	outside i box
	Tick (✓) one box. [1 mark]	l
	The efficiency is increased when the kelvin temperatures of the hot source and the cold sink are increased by equal amounts.	
	The maximum efficiency depends on the $p\!-\!V$ cycle.	
	The efficiency is 50% when the kelvin temperature of the hot source is twice the kelvin temperature of the cold sink.	
0 5 . 2	An ideal heat engine has an efficiency of 0.33 The same engine works in reverse as an ideal refrigerator between the same hot and cold spaces.	
	Determine the coefficient of performance COP_{ref} of the refrigerator. [2 marks]	1
	extstyle ext	3
	END OF QUESTIONS	

Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

