

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		_
Candidate signature	I declare this is my own work.	_

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Chemistry Paper 2F

Wednesday 10 June 2020

Morning

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- · Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use Question Mark 1 2 3 4 5 6 7 TOTAL

Information

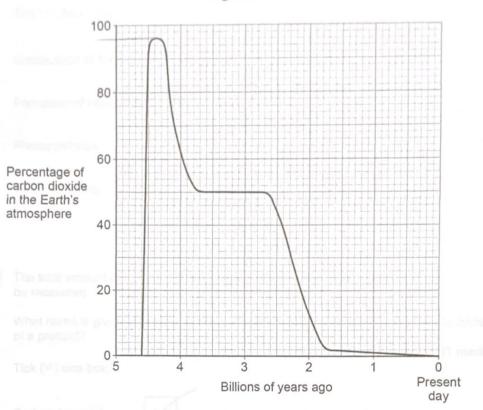
- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers,

8464/C/2F

0 1	Crude oil is a mix	ture of hydroca	rbons.		
0 1.1	Complete the ser	ntences.			
	Choose answers	from the box.			[2 marks]
	air	enzymes	mud	plankton	trees
	Crude oil is the re	emains of	plankton		
	Millions of years	ago biomass wa	as buried under _	mud	
0 1.2	There are three s	stages, A , B and	d C, in separating	hydrocarbons fro	m crude oil.
	Stage A Hydr	ocarbons evapo	prate		
	Stage B Crud	e oil is heated			×
	Stage C Vapo	ours condense			
	Give the correct	order for stages	A, B and C.		[1 mark]
	First stage	В			
	Second stage	A			[1 mark]
	Third stage	C			

Do not write outside the

0 1.3	What is the name of the process used in separating hydrocarbons from cruc	le oil?
	Tick (✓) one box.	
	Chromatography	
	Filtration	
	Fractional distillation	
0 1.4	Alkanes are hydrocarbons.	
	Figure 1 represents an alkane.	60 Feb. (1)
	Figure 1	
	x x	[1 merili)
	What is the formula of the alkane in Figure 1?	[1 mark]
	C 3 H 8	
0 1.5	What does X represent in Figure 1?	[1 mark]
	Tick (✓) one box.	[, man,
	Covalent bond	
	Ionic bond	
	Metallic bond	


1 . 6	What is the general formula for	amaricar	[1 mark]
	Tick (✓) one box.		[1 mark]
	C _n H _{2n-2}		
	C _n H _{2n}		
	C_nH_{2n+2}		
1.7	Hydrocarbons are used to make	e polymers. Polymers are used to	o make plastic bags.
	In one year 8.0 billion plastic ba	gs were used.	
	The next year there was a charge were used.	ge for plastic bags and only 1.3 b	illion plastic bags
	Calculate the decrease in the number $8 \cdot 0 - 1 \cdot 3 = 0$		[1 mark]
	80-1-3	Decrease = 6.7	billion
		Ballons of years also	Present
			A CONTRACTOR OF THE PARTY OF TH
			semcephare*

0 2 This question is about carbon dioxide in the Earth's atmosphere.

Figure 2 shows how the percentage of carbon dioxide in the Earth's atmosphere has changed over 4.6 billion years.

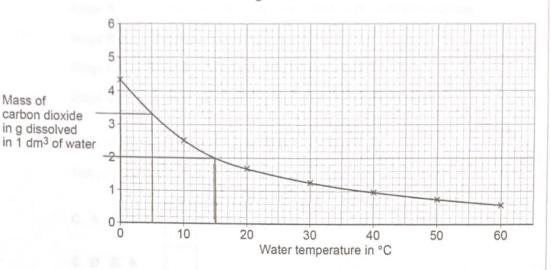
Figure 2

0 2.1 What was the highest percentage of carbon dioxide in the Earth's atmosphere?

Use Figure 2.

Highest percentage = 96 [1 mark]

Do not write outside the box


0 2 . 2	The percentage of carbon dioxide in the atmosphere has decreased since Earth's early atmosphere.
	Which two processes have decreased the percentage of carbon dioxide in the Earth's atmosphere? [2 marks]
	Tick (✓) two boxes.
	Combustion of fuels
	Formation of sedimentary rocks
	Photosynthesis
	Volcanic activity
	The state of the s
0 2 . 3	The total amount of carbon dioxide emitted over the life cycle of a product can be measured.
	What name is given to the total amount of carbon dioxide emitted during the life cycle of a product? [1 mark]
	Tick (✓) one box.
	Carbon footprint
	Global dimming
	Greenhouse effect
	Calculate the difference in the mass of carbon disolde disspiced in 1 delf of water
	ot 8 °C seet at 18 °C Use Valide 1.
	3-3-2-13
	· Manuary 1.3

Carbon dioxide dissolves in water.

Figure 3 shows the mass of carbon dioxide dissolved in water at different temperatures.

Figure 3

0 2 . 4 Complete Table 1.

Mass of

Use Figure 3.

[2 marks]

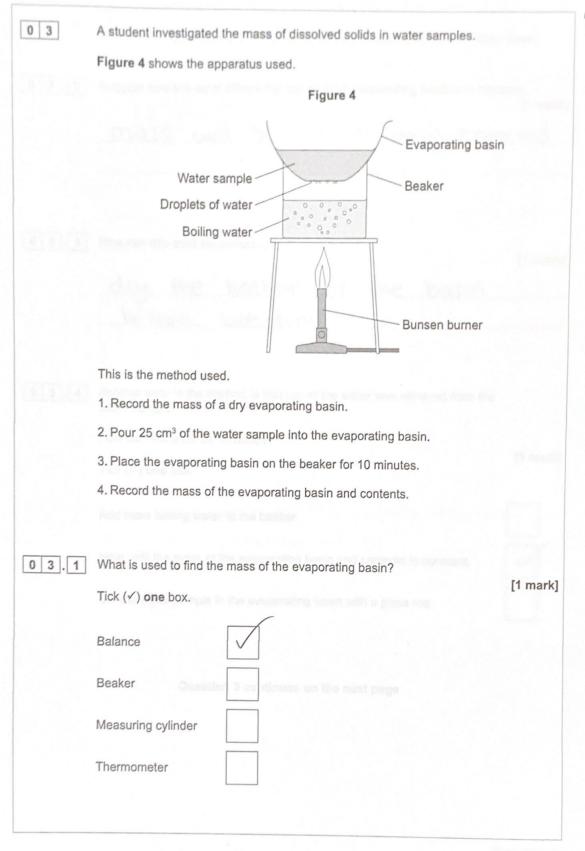
Table 1

Water temperature in °C	Mass of carbon dioxide in g dissolved in 1 dm ³ of water
5	3.3
15	2

Calculate the difference in the mass of carbon dioxide dissolved in 1 dm3 of water 0 2 . 5 at 5 °C and at 15 °C

Use Table 1.

3-3-2=1.3


[1 mark]

Mass =

0 2 . 6	Carbon dioxid	de is a greenhouse gas.		box
	The greenho	use effect happens in four stages.		
	The four stag	es are:		
	Stage A	Carbon dioxide stops longer wavelength radiation escaping		
	Stage B	Radiation is absorbed by the Earth		
	Stage C	Longer wavelength radiation is emitted		
	Stage D	Shorter wavelength radiation enters the atmosphere.		
	What is the c	orrect order of stages A, B, C and D?	[1 mark]	
	Tick (✓) one	box.		
	C, A, B, D	Burnon burner		
	C, D, B, A	sho i s so		
	1. Record the	eventualing beats		
	D, B, C, A	of our example into the evaporating basin.		
	D, C, B, A	wep rain; basis on the besker for 10 minutes.		
		mass of the avaporating basin and contents.		
0 2 . 7	Changes in the	ne percentage of carbon dioxide in the Earth's atmosphere caus	e	
	climate chang		(1 mart)	
	Give two effe	ects of climate change.	[2 marks]	
	1 Risir	ng sea levels		
		V Responsed		
	2 Extr	emes of weather		
	Measuring cyl	leder -		10

	One error is that droplets of water collect on the bottom of the evaporating	j basin.
0 3.2	Suggest how this error affects the mass of the evaporating basin and continuous mass will be greater than expense.	[1 mark]
0 3.3	How can this error be corrected?	[1 mark]
	dry the bottom of the basin	
	before weighing.	Meso
0 3.4	Another error in the method is that not all the water was removed from the water sample.	0.04
	How can this error be corrected? Tick (✓) one box.	[1 mark]
	Add more boiling water to the beaker.	
	Heat until the mass of the evaporating basin and contents is constant.	
	Stir the water sample in the evaporating basin with a glass rod.	
	Question 3 continues on the next page	

-	4
2	1
3	١.
	3

The water in the water sample turns into steam.

What is the name of this process?

[1 mark]

evaporation

Another student did the experiment correctly with three water samples A, B and C.

Table 2 shows the results.

Table 2

Water sample		Mass of dissol	lved solids in g	
	Test 1	Test 2	Test 3	Mean
A	0.23	0.23	0.20	Х
В	0.03	0.07	0.02	0.04
С	1.45	1.60	1.45	1.50

The range is the difference between the largest value and the smallest value. 0 3 . 6

Which water sample has the greatest range of results?

[1 mark]

Tick (✓) one box.

В

	Calculate the mean mass X for water sample A.
	Use Table 2.
	[2 marks]
	0.23 + 0.23 + 0.2 _ 0.22 =
	3
	$X = \bigcirc \cdot 22 g$
8	What is the dependent variable in this experiment? [1 mark]
	Tick (✓) one box.
	Mass of dissolved solids
	Pigure 5 shows the apperatus upon
	Time taken for water to heat
	Type of water sample
	Volume of boiling water
	A different victor county of a contains 2.0 m of discounty desired and desired in 450 mm ²
9	A different water sample contains 3.6 g of dissolved solids in 150 cm ³
	Calculate the mass of dissolved solids in 25 cm ³ of this sample. [2 marks]
	$\frac{25}{150} \times 3.6 = 0.6$
	150
	Mass = 0 . 6 g

0 4

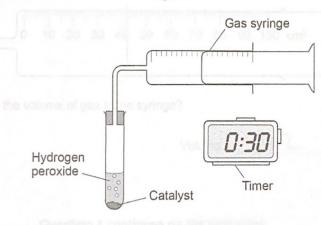
This question is about hydrogen peroxide.

0 4 . 1

The symbol equation for the decomposition of hydrogen peroxide (H2O2) is:

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

Complete the word equation for the decomposition of hydrogen peroxide.


[2 marks]

A student investigated the effect of different catalysts on the decomposition of hydrogen peroxide.

The student measured the volume of gas collected every 30 seconds for 5 minutes.

Figure 5 shows the apparatus used.

Figure 5

Do not write outside the box

0 4 . 2	Which two variables should the student keep the same to make the investifair test?	gation a
	tail test?	[2 marks]
	Tick (✓) two boxes.	
	These in recording	
	Concentration of hydrogen peroxide	
	Mass of catalyst	
	Size of gas syringe	
	Type of catalyst	
	Volume of gas collected	
0 4.3	Figure 6 shows a gas syringe.	
	Figure 6	
	Volume of The Table 1	_
	0 10 20 30 40 50 60 70 80 90 100 cm ³	Ð
	What is the values of and in the aurings?	
	What is the volume of gas in the syringe?	[1 mark]
	Volume = 42	cm ³
	Question 4 continues on the next page	
		U mornej
	-	

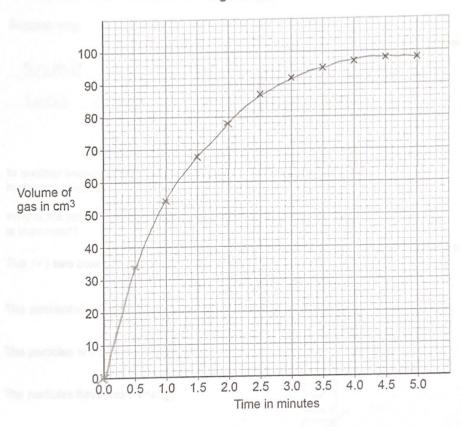


Table 3

Time in minutes	0.0	0.5	1.0	1.5	2.0
Volume of gas in cm ³	0	34	54	68	78

0 4 . 4 Six of the other results have been plotted on Figure 7.

Figure 7

Complete the graph in Figure 7.

You should:

- plot the results from Table 3
- draw a line of best fit for all of the results.

[3 marks]

	The student repeated the experiment with other catalysts and plotted a graph for each of the catalysts used.	01
0 4 . 5	Suggest how the student could use these graphs to identify the best catalyst. [1 mark]	
	The best catalyst will have the	
	steepest initial gradient	
0 4 . 6	All the graphs level off at the same volume of gas.	
	Suggest why. [1 mark]	
	Same volume of hydrogen peroxide	
	was used in all experiments	
	Why is the rate of reaction faster when the temperature of the hydrogen peroxide is increased? [2 marks] Tick (✓) two boxes.	
	The concentration of hydrogen peroxide decreases.	
	The particles are moving more slowly.	
	The particles have more energy.	
	There are more particle collisions per second.	
	There are more particles per unit volume.	1
	Colvers	

0 5 This question is about mixtures. 0 5 . 1 Which substance is a mixture? [1 mark] Tick (✓) one box. Methane Nitrogen 0 5 Food colourings are often mixtures of dyes. What name is given to mixtures that are designed as useful products? [1 mark] Formulation A student investigated a purple food colouring, \mathbf{Y} , using chromatography. The student compares Y with dyes A, B and C. Figure 8 shows the apparatus used. 0 5 . 3 Figure 8 - Lid Beaker Chromatography paper Υ C В A Start line drawn in pencil Solvent

box

Do not write outside the

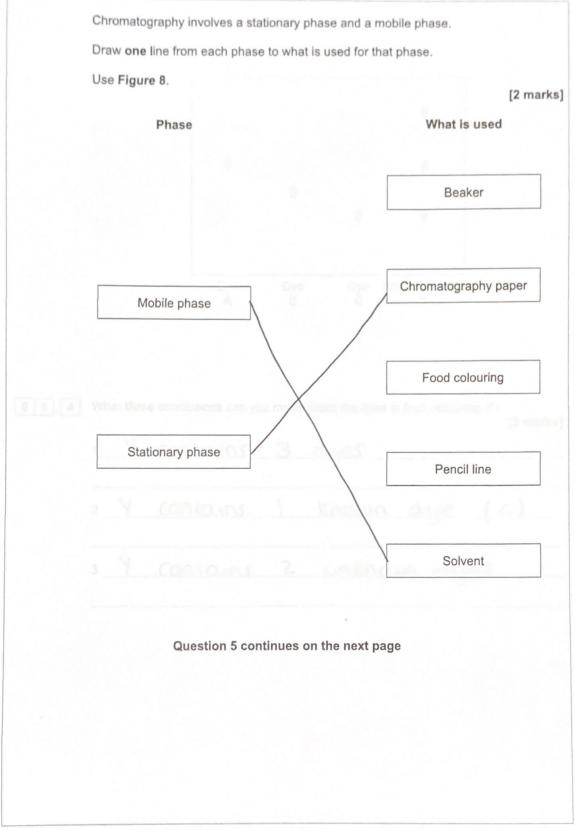
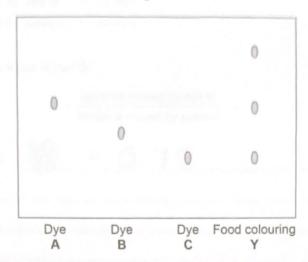



Figure 9 shows the student's results.

Figure 9

What three conclusions can you make about the dyes in food colouring Y?

[3 marks]

- 1 Y contains 3 dyes
- 2 Y contains 1 Known dye (c)
 3 Y Contains 2 unknown dyes

0 5 . 6 In a different experiment a student recorded these results:

Distance moved by dye G = 60 mm

Distance moved by solvent = 80 mm

Calculate the Rr value of dye G.

$$R_f = \frac{\text{distance moved by dye } \textbf{G}}{\text{distance moved by solvent}}$$

[2 marks]

$$R_1 = \frac{60}{80} = 0.75$$

9

Turn over for the next question

0 6 This question is about the Earth's resources.

When most fuels burn carbon dioxide is produced.

Propane (C₃H₈) is a fuel.

Balance the equation for the combustion of propane.

[1 mark]

$$C_3H_8 + 5 O_2 \rightarrow 3CO_2 + 4H_2O$$

0 6 . 2 Describe the test for carbon dioxide.

Give the result of the test.

[2 marks]

bubble gas through limewater

Result turns cloudy

0 6 . 3 Propane can be cracked to produce propene and hydrogen.

Complete the symbol equation for the reaction.

[1 mark]

$$C_3H_8 \rightarrow C_3H_6 + H_2$$
propane propene hydrogen

0 6.4	Describe the test for hydrogen.	
	Give the result of the test. [2 marks	1
	Test Hold lit splint to test tube	-
	Result A squeaky pop will be heard if	-
	hydrogen is present.	-
0 6 . 5	Propene is an alkene.	
	Describe the test for alkenes.	
	Give the colour change in the test. [3 marks]
	Test add bromine water	-
	Colour change Orange to Colour less	_ L
	Turn over for the next question	

0 7

Some students investigated the effect of temperature on the rate of reaction.

- 0 7.
- The students reacted sodium thiosulfate solution with hydrochloric acid.

This is the method used.

- Use a beaker to measure 50 cm³ of heated sodium thiosulfate solution into a conical flask.
- 2. Measure the temperature of the room.
- 3. Put the conical flask on a black cross drawn on a piece of paper.
- 4. Start a timer.
- 5. Use the same beaker to measure 10 cm³ of hydrochloric acid into the conical flask.
- 6. Stop the timer when the cross is no longer visible.

The students repeated the experiment at a different room temperature.

Figure 10 shows the apparatus.

Thermometer

Conical flask

Sodium thiosulfate and hydrochloric acid

Black cross drawn on a piece of paper

The method contains errors and does not produce accurate results.

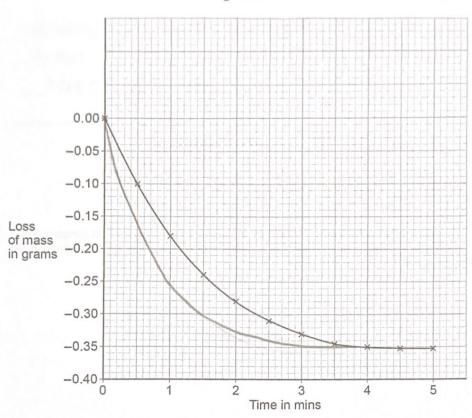
Describe a method the students should use to produce accurate results.

You do not need to write about safety precautions.

[6 marks]

Use a measuring cylinder to measure 50 cm3 of sodium thiosulfate and use a different measuring cylinder to measure 10 cm3 of hydrochloric acid. Add them together in a conical flask and immediately start the fimer, and measure the temperature of the solution. The flask should be placed on the piece of paper with the black cross. When the black cross is no longer visible the timer should be stopped and the temperature of the solution is measured. Calculate the mean temperature for this reaction then repeat the experiment at different temperatures. It is important that the students use the same concentrations and volumes of sodium thiosulfate and hydrochloric acid and just change the temperature by heating the different solutions

Question 7 continues on the next page



Some students investigated the effect of temperature on the rate of a different reaction.

They recorded the loss of mass from their apparatus at 40 °C

Figure 11 shows the results.

Figure 11

D	51	100	rf.	pi	ri	to
ti	d	tik	79	# 1	th	19
		b	b	ý		

0 7.2	Calculate the mean rate of reaction between 1 minute and 3 minutes	at 40	°C
	Use Figure 11 and the equation:		

$$\label{eq:mean_mass} \text{Mean rate of reaction} = \frac{\text{change in mass of gas in g}}{\text{time in mins}}$$

[3 marks]

change in mass of gas = 0.15
time = 2
rate of reaction =
$$\frac{0.15}{2}$$
 = 0.075

Draw a curve on Figure 11 for the results you would expect at a temperature of 50 °C instead of 40 °C

[2 marks]

11

END OF QUESTIONS

