Please check the examination detalls below before entering your candidate information


# Tuesday 5 November 2019 

\section*{| Morning (Time: 1 hour 30 minutes) | Paper Reference 1MA1/1H |
| :--- | :--- |}

Mathematics

## Paper 1 (Non-Calculator) Higher Tier

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser. Tracing paper may be used.

## Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.

- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may not be used.


## Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.


## Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.
(
Pearson


## MME.

## GCSE Maths Products



# Available in the course in a box or for purchase separately. 

Answer ALL questions.
Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Find the Lowest Common Multiple (LCM) of 108 and 120


$$
\begin{aligned}
108 & =2^{2} \times 3^{3} \\
\text { LCM } & =2^{3} \times 3^{3} \times 5 \\
& =8 \times 27 \times 5 \\
& =1080
\end{aligned}
$$

$$
120=2^{3}+3 \times 5
$$


(Total for Question 1 is $\mathbf{3}$ marks)

2 There are 60 people in a choir.
Half of the people in the choir are women.
The number of women in the choir is 3 times the number of men in the choir.
The rest of the people in the choir are children.
the number of children in the choir : the number of men in the choir $=n: 1$
Work out the value of $n$.
You must show how you get your answer.

$$
\begin{aligned}
& 60 \div 2=30 \text { women } \\
& 30 \div 3=10 \text { men } \\
& 60-30-10=20 \text { children } \\
& \text { children : men } \\
& 20: 10 \\
& 2: 1
\end{aligned}
$$

$$
n=2
$$

$$
n=2
$$

(Total for Question 2 is 4 marks)
3 Work out $1 \frac{3}{4} \times 1 \frac{1}{3}$
Give your answer as a mixed number.

$$
\begin{aligned}
1 \frac{3}{4} \times 1 \frac{1}{3}=\frac{7}{4} \times \frac{4}{3} & =\frac{28}{12} \\
& =2 \frac{4}{12} \\
& =2 \frac{1}{3}
\end{aligned}
$$

$$
2 \frac{1}{3}
$$

4 Use a ruler and compasses to construct the line from the point $P$ perpendicular to the line $C D$. You must show all construction lines.


5 The diagram shows triangle $A B C$.

$A D B$ is a straight line.
the size of angle $D C B$ : the size of angle $A C D=2: 1$
Work out the size of angle $B D C$.

$$
\begin{aligned}
& \angle A C B=180-75-51=54^{\circ} \\
& 54 \div 3=18^{\circ} \quad \text { per part of ratio }
\end{aligned}
$$

$$
\angle O C B: \angle A C D
$$

$$
36: 18
$$

$$
\angle B C D=180-51-36=93^{\circ}
$$

64 red bricks have a mean weight of 5 kg .
5 blue bricks have a mean weight of 9 kg .
1 green brick has a weight of 6 kg .
Donna says,
"The mean weight of the 10 bricks is less than 7 kg ."
Is Donna correct?
You must show how you get your answer.
Red total weight $=4 \times 5=20 \mathrm{~kg}$
Blue total weight $=5 \times 9=45 \mathrm{~kg}$
$\begin{aligned} \text { Total mean }=\frac{20+45+6}{10} & =\frac{71}{10} \\ & =7.1 \mathrm{~kg}\end{aligned}$
So no, Donna is not correct.
(Total for Question 6 is $\mathbf{3}$ marks)

7 (a) Simplify $\left(p^{2}\right)^{5}$
(b) Simplify $12 x^{7} y^{3} \div 6 x^{3} y$

$$
\begin{aligned}
& 12 \div 6=2 \\
& x^{7} \div x^{3}=x^{7-3}=x^{4} \\
& y^{3} \div y=y^{3-1}=y^{2}
\end{aligned} \quad 2 x^{4} y^{2} \quad l i
$$

(Total for Question 7 is 3 marks)

8 The accurate scale drawing shows the positions of port $P$ and a lighthouse $L$.


Scale: 1 cm represents 4 km .
Aleena sails her boat from port $P$ on a bearing of $070^{\circ}$
She sails for $1 \frac{1}{2}$ hours at an average speed of $12 \mathrm{~km} / \mathrm{h}$ to a port $Q$.
Find
(i) the distance, in km , of port $Q$ from lighthouse $L$,
(ii) the bearing of port $Q$ from lighthouse $L$.

Distance $=$ Speed $\times$ time $=12 \times 1.5=18 \mathrm{~km}$

$$
18 \mathrm{~km}=18 \div 4=4.5 \mathrm{~cm}
$$

distance from $Q$ to $L$ is 5.5 cm

$$
5 \cdot 5 \times 4=22 \mathrm{~km}
$$

$$
360-37=323^{\circ}
$$

distance $Q L=$ $\qquad$ bearing of $Q$ from $L=$
(Total for Question 8 is 5 marks)

9 A car travels for 18 minutes at an average speed of $72 \mathrm{~km} / \mathrm{h}$.
(a) How far will the car travel in these 18 minutes?

$$
\begin{aligned}
\text { distence } & =\text { speed } \times \text { time } \\
& =72 \times \frac{18}{60} \\
& =72 \times 0.3 \\
& =21.6 \mathrm{~km}
\end{aligned}
$$

$21 \cdot 6 \mathrm{~km}$
(2)

David says,
" 72 kilometres per hour is faster than 20 metres per second."
(b) Is David correct?

You must show how you get your answer.

$$
72 \mathrm{~km} / \mathrm{h}=72 \times \frac{1000}{3600}=20 \mathrm{~m} / \mathrm{s}
$$

So no, since 72 kilometres per now is 20 memes per second.

10 The cumulative frequency table shows information about the times, in minutes, taken by 40 people to complete a puzzle.

| Time ( $\boldsymbol{m}$ minutes) | Cumulative <br> frequency |
| :---: | :---: |
| $20<m \leqslant 40$ | 5 |
| $20<m \leqslant 60$ | 25 |
| $20<m \leqslant 80$ | 35 |
| $20<m \leqslant 100$ | 38 |
| $20<m \leqslant 120$ | 40 |

(a) On the grid below, draw a cumulative frequency graph for this information.

(2)
(b) Use your graph to find an estimate for the interquartile range.

$$
\begin{aligned}
I Q R & =U Q-L Q \\
& =68-44 \\
& =24 \quad 24_{(2)} \quad 2 \text { minutes }
\end{aligned}
$$

One of the 40 people is chosen at random.
(c) Use your graph to find an estimate for the probability that this person took between 50 minutes and 90 minutes to complete the puzzle.

$$
37-16=19
$$


(2)

11 There are $p$ counters in a bag. 12 of the counters are yellow.

Shafiq takes at random 30 counters from the bag. 5 of these 30 counters are yellow.

Work out an estimate for the value of $p$.

$$
\begin{aligned}
\frac{S}{30} & =\frac{12}{p} \\
S p & =360 \\
p & =72
\end{aligned}
$$

$12 T=\frac{q}{2}+5$
Here is Spencer's method to make $q$ the subject of the formula.

$$
\begin{aligned}
2 \times T & =q+5 \\
q & =2 T-5
\end{aligned}
$$

What mistake did Spencer make in the first line of his method?

$$
\text { The } 5 \text { needs to be multiplied by } 2
$$

13 (a) Write $\frac{5}{x+1}+\frac{2}{3 x}$ as a single fraction in its simplest form.

$$
\begin{aligned}
& \frac{S(3 x)}{3 x(x+1)}+\frac{2(x+1)}{3 x(x+1)} \\
& =\frac{15 x+2 x+2}{3 x(x+1)} \\
& =\frac{17 x+2}{3 x(x+1)}
\end{aligned}
$$

$$
\frac{17 x+2}{3 x(x+1)}
$$

(2)
(b) Factorise $(x+y)^{2}+3(x+y)$

$$
(x+y)(x+y+3)
$$

$$
(x+y)(x+y+3)
$$

14 The diagram shows a right-angled triangle.


All the measurements are in centimetres.
The area of the triangle is $27.5 \mathrm{~cm}^{2}$
Work out the length of the shortest side of the triangle.
You must show all your working.

$$
\begin{gathered}
\frac{1}{2}(x-2)(x+4)=27-5 \\
(x-2)(x+4)=55 \\
x^{2}+4 x-2 x-8=55 \\
x^{2}+2 x-63=0 \\
(x-7)(x+9)=0 \\
x=7 \\
\text { so } \quad x-2=7-2=5
\end{gathered}
$$

$\qquad$
(Total for Question 14 is 4 marks)

15 Express $0.4 i \dot{8}$ as a fraction.
You must show all your working.

$$
\begin{aligned}
x & =0.41818 \cdots \\
10 x & =4.1818 \cdots \\
1000 x & =418 \cdot 18 \cdots \\
990 x & =1000 x-10 x \\
& =418 \cdot 18 \cdots-4.1818 \cdots \\
& =414
\end{aligned}
$$

$$
990 x=414
$$

$$
\frac{414}{990}
$$

$$
x=\frac{414}{990}
$$

16 (a) Rationalise the denominator of $\frac{22}{\sqrt{11}}$
Give your answer in its simplest form.

$$
\begin{aligned}
\frac{22}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}} & =\frac{22 \sqrt{11}}{11} \\
& =2 \sqrt{11}
\end{aligned}
$$

(b) Show that $\frac{\sqrt{3}}{2 \sqrt{3}-1}$ can be written in the form $\frac{a+\sqrt{3}}{b}$ where $a$ and $b$ are integers.

$$
\begin{aligned}
\frac{\sqrt{3}}{(2 \sqrt{3}-1)} \times \frac{(2 \sqrt{3}+1)}{(2 \sqrt{3}+1)} & =\frac{\sqrt{3}(2 \sqrt{3}+1)}{12+2 \sqrt{3}-2 \sqrt{3}-1} \\
& =\frac{6+\sqrt{3}}{11}
\end{aligned}
$$

17 A and $\mathbf{B}$ are two similar cylindrical containers.

the surface area of container $\mathbf{A}$ : the surface area of container $\mathbf{B}=4: 9$
Tyler fills container A with water.
She then pours all the water into container $\mathbf{B}$.
Tyler repeats this and stops when container $\mathbf{B}$ is full of water.
Work out the number of times that Tyler fills container $\mathbf{A}$ with water.
You must show all your working.

$$
\begin{array}{r}
\text { lengths: } \sqrt{4}: \sqrt{9} \\
2: 3
\end{array}
$$

Volumes: $2^{3}: 3^{3}$

$$
8: 27
$$

$$
27 \div 8=3.375
$$

So tyler will fill container A 4 times

18 The function $f$ is given by
(a) Show that $\Gamma^{-1}(50)=3$

$$
\begin{aligned}
& x=2 y^{3}-4 \\
& 2 y^{3}=x+4 \\
& y^{3}=\frac{x+4}{2} \\
& y=\sqrt[3]{\frac{x+4}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{-1}(x)=\sqrt[3]{\frac{x+4}{2}} \\
& f^{-1}(50)=\sqrt[3]{\frac{50+4}{2}} \\
& =\sqrt[3]{27}=3_{(2)}
\end{aligned}
$$

The functions g and h are given by

$$
\mathrm{g}(x)=x+2 \text { and } \mathrm{h}(x)=x^{2}
$$

(b) Find the values of $x$ for which

$$
\begin{aligned}
& \operatorname{hg}(x)=3 x^{2}+x-1 \\
& h(g(x))=(x+2)^{2} \\
& (x+2)^{2}=3 x^{2}+x-1 \\
& x^{2}+4 x+4=3 x^{2}+x-1 \\
& 2 x^{2}-3 x-5=0 \\
& (2 x-5)(x+1)=0 \\
& x=\frac{5}{2}, x=-1 \\
& \quad x=\frac{5}{2}, x=-1
\end{aligned}
$$

19 Given that $9^{-\frac{1}{2}}=27^{\frac{1}{4}}+3^{x+1}$
find the exact value of $x$.

$$
\begin{aligned}
& 9^{-\frac{1}{2}}=3^{-1} \\
& 27^{\frac{1}{4}}=3^{\frac{3}{4}} \\
& 3^{-1}=3^{\frac{3}{4}} \div 3^{x+1} \\
& -1=\frac{3}{4}-(x+1) \\
& x+1=3^{\frac{3}{4}-(x+1)} \\
& x=\frac{3}{4}
\end{aligned}
$$

$$
x=\frac{3}{4}
$$

(Total for Question 19 is 3 marks)

20 The graph of $y=\mathrm{f}(x)$ is shown on the grid.

(a) On the grid, draw the graph with equation $y=\mathrm{f}(x+1)-3$

Point $A(-2,1)$ lies on the graph of $y=\mathrm{f}(x)$.
When the graph of $y=\mathrm{f}(x)$ is transformed to the graph with equation $y=\mathrm{f}(-x)$, point $A$ is mapped to point $B$.
(b) Write down the coordinates of point $B$.

21 Sketch the graph of

$$
y=2 x^{2}-8 x-5
$$

showing the coordinates of the turning point and the exact coordinates of any intercepts with the coordinate axes.

$$
\begin{aligned}
& \text { when } y=0,2 x^{2}-8 x-5=0 \\
& x=\frac{8 \pm \sqrt{(-8)^{2}-4 \times 2 \times-5}}{2+2}=\frac{8 \pm \sqrt{51}}{4}
\end{aligned}
$$

$$
\text { so }\left(\frac{8+\sqrt{51}}{4}, 0\right) \text { and }\left(\frac{8-\sqrt{51}}{4}, 0\right)
$$

are the $x$-intercepts.
when $x=0, y=-5$ so $(-5,0)$ is the $y$-intercept.

$$
\begin{aligned}
y=2\left(x^{2}-4 x-\frac{5}{2}\right) & =2\left((x-2)^{2}-4-\frac{5}{2}\right) \\
& =2\left((x-2)^{2}-\frac{13}{2}\right) \\
& =2(x-2)^{2}-13
\end{aligned}
$$

so $(2,-13)$ is the turning point.

(Total for Question 21 is 5 marks)
$22 A, B, C$ and $D$ are four points on a circle.

$A E C$ and $D E B$ are straight lines.
Triangle $A E D$ is an equilateral triangle.
Prove that triangle $A B C$ is congruent to triangle $D C B$.
$\angle A C B=\angle A D B$ since angles in the same segment $=60^{\circ}$ are equal
$\angle A C=\angle B C=60^{\circ}$ since ingres in the same segnentare equal.
$P B=D E+E B=A E+E C=A C$ since sides of an equilateral triangle are equal.
$B C$ is common in both triangles.
so $A B C$ and $D C B$ are congment by $S A S$.

# MME. <br> <br> GCSE Online Course 

 <br> <br> GCSE Online Course}

Numbers

Course
Completion:

Algebra

Course
Completion:

0\%

Trigonometry

Course
Completion:

Graphs

Course
Completion:

## Track your progress through the course and your performance on practice questions

## AVERAGE SCORE

## Practice Questions "ाITTM

Calculate the following:


## Thousands of

 questions!Over 100 topics!
Each topic contains revision videos, three practice tests and an online exam.

0\% Completed
2. Algebra

0\% Completed
3. Graphs

0\% Completed
3.1 Gradients of Straight Line Graphs
$3.2 \mathrm{y}=\mathrm{mx}+\mathrm{c}$
3.3 Coordinates and Midpoints
3.4 Drawing Straight Line Graphs
3.5 Parallel Lines

Item
(- Revision
(3) Practice Tests

- Online Exam

Status
Incomplete

0/3 Complete

Incomplete

Latest Result
3.6 Quadratic and Cubic Graphs
3.7 Turning Points of Quadratic Graphs

