

Please write clearly in		19400		
Centre number			Candidate number	
Surname		DEL S	24017012	
Forename(s)				
Candidate signature				
	I declare ti	his is my owr	work.	

A-level MATHEMATICS

Paper 1

Wednesday 3 June 2020

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examin	Co.
Question	Mark
1	
2	X
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
TOTAL	

MME.

A Level Products

Revision Cards

Predicted Papers

Available to buy separately or as a bundle

Answer all questions in the spaces provided.

The first three terms, in ascending powers of x, of the binomial expansion of 1 $(9+2x)^{\frac{1}{2}}$ are given by

$$(9+2x)^{\frac{1}{2}} \approx a + \frac{x}{3} - \frac{x^2}{54}$$

where a is a constant.

State the range of values of x for which this expansion is valid. 1 (a)

Circle your answer.

[1 mark]

$$|x| < \frac{2}{9}$$
 $|x| < \frac{2}{3}$ $|x| < 1$

$$|x| < \frac{2}{3}$$

$$\left(|x|<\frac{9}{2}\right)$$

1 (b) Find the value of a.

Circle your answer.

[1 mark]

1

2

9

Do not well patricle the

A student is searching for a solution to the equation f(x) = 02

He correctly evaluates

$$f(-1) = -1$$
 and $f(1) = 1$

and concludes that there must be a root between -1 and 1 due to the change of sign.

Select the function f(x) for which the conclusion is **incorrect**.

Circle your answer.

[1 mark]

$$f(x) = \frac{1}{x}$$

$$f(x) = x$$

$$f(x) = x^3$$

$$f(x) = x$$
 $f(x) = x^3$ $f(x) = \frac{2x+1}{x+2}$

The diagram shows a sector OAB of a circle with centre O and radius 2 3

The angle AOB is θ radians and the perimeter of the sector is θ

Find the value of θ

Circle your answer.

[1 mark]

 $\sqrt{3}$

3

Turn over for the next question

[3 marks]

4 (b) Solve the inequality

$$4 - |2x - 6| > 2$$

[2 marks]

22-642	2x-64-2

2248

2× 64

2 < 4

2 17 2

2	4	×	<	4
---	---	---	---	---

Ď.	9	no	r	wa	(ve
				a	
7	7		77		~
		b	Œρ	٠.	

Prove that, for it	nteger values of n such that $0 \le n < 4$	
	$2^{n+2} > 3^n$	[2 marks]
n = 0	$2^{n+2} = 4 > 3^{\circ} = 1$	[2 marks]
n = 1		
n = 2	2 16 7 3 = 9	
u = 3	2 1 = 32 > 3 = 27	
s/i	0 4 0 4 4	

Turn over for the next question

5

Turn over ▶

00	n	ú	,	ve	٧e
OUR	'n	k	٠	or	w
	1	b	×		

6	Four students, Tom, Josh, Floella and Georgia are attempting to complete the	0
	indefinite integral	

$$\int \frac{1}{x} \, \mathrm{d}x \qquad \text{for } x > 0$$

Each of the students' solutions is shown below:

Tom
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x$$

Josh
$$\int \frac{1}{x} dx = k \ln x$$

Floelia
$$\int \frac{1}{x} \, dx = \ln Ax$$

Georgia
$$\int \frac{1}{x} dx = \ln x + c$$

6 (a) (i) Explain what is wrong with Tom's answer.

[1 mark]

He has not included a constant of

6 (a) (ii) Explain what is wrong with Josh's answer.

[1 mark]

The constant should be added

rather than nultiplied.

6 (b) Explain why Floella and Georgia's answers are equivalent.

[2 marks]

Rules of logs: In Ax = In A + Inx = lax + c,

Do not write outside the bay

7	Consecutive terms of a sequence are related by	
	$u_{n+1} = 3 - (u_n)^2$	
7 (a)	In the case that $u_q = 2$	
7 (a) (i)		
	$M_2 = 3 - 2^* = -1$	2 marks]
	M3 = 3 -(-1) = 2	
7 (a) (ii)	Find u_{50} $U_{50} = -1 \qquad (50 \text{ is even})$	[1 mark]
7 (b)	State a different value for u_1 which gives the same value for u_{50} as found in part (a)(ii). $\mathcal{M}_1 = -2$	[1 mark]
	Turn over for the next question	

Mike, an amateur astronomer who lives in the South of England, wants to know how 8 the number of hours of darkness changes through the year.

> On various days between February and September he records the length of time. H hours, of darkness along with I, the number of days after 1 January.

His results are shown in Figure 1 below.

Mike models this data using the equation

$$H = 3.87 \sin \left(\frac{2\pi (t + 101.75)}{365} \right) + 11.7$$

Find the minimum number of hours of darkness predicted by Mike's model. Give your 8 (a) answer to the nearest minute.

mun value where $Sin\left(\frac{2\pi(t+101-75)}{365}\right) = -1$ [2 marks]

= 7 hours 50 mins H =-3.87 + 11-7= 7.83

8 (b)	Find the maximum number of consecutive days where the number of ho darkness predicted by Mike's model exceeds 14	[3 marks
	3-87 sin (2x(+101 95)) +117 =14	(o marks
	=7 Sin (365) = 39+	
	t= 200/2779 - 64.78, 43.78, 300	-22,408 78
	401-300 = 108	
		

Question 8 continues on the next page

8 (c) Mike's friend Sofia, who lives in Spain, also records the number of hours of darkness on various days throughout the year.

Her results are shown in Figure 2 below.

Sofia attempts to model her data by refining Mike's model.

She decides to increase the 3.87 value, leaving everything else unchanged.

Explain whether Sofia's refinement is appropriate.

[2 marks]

the range of the graph, which doesn't match up to her graph.

9 Chloe is attempting to write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerators.

Her incorrect attempt is shown below.

Step 1
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{A}{x+1} + \frac{B}{(x+2)^2}$$

Step 2
$$2x^2 + x \equiv A(x+2)^2 + B(x+1)$$

Step 3 Let
$$x = -1 \Rightarrow A = 1$$

Let $x = -2 \Rightarrow B = -6$

Answer
$$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{1}{x+1} - \frac{6}{(x+2)^2}$$

9 (a) (i) By using a counter example, show that the answer obtained by Chloe cannot be correct.

[2 marks]

$$hearth x = 2.$$

9 (a) (ii) Explain her mistake in Step 1.

[1 mark]

9 (b)	Write	$2x^{2} + x$	os portial	fractions	udth	constant	
a (u)	TVILLE	$\frac{2x^2+x^2}{(x+1)(x+2)^2}$	as paruai	nactions,	witti	CONSIGNI	numerators,

[4 marks]

$$\frac{2x^{2}+x}{(x+1)(x+2)^{2}} \equiv A + B + C$$

$$\frac{\therefore 2x^2 + x}{(x+1)(x+2)^2} = \frac{1 + 1 + 6}{x+1 + 2}$$

Turn over >

(a) An arithmetic series is given by	
$\sum_{r=5}^{20} (4r+1)$	
(a) (i) Write down the first term of the series.	[1 mark]
21	[1 mark]
(a) (ii) Write down the common difference of the series.	Id month
4	[1 mark]
a) (iii) Find the number of terms of the series.	[1 mark]
16	

10 (b)	A different	arithmetic	series	is	given	by
--------	-------------	------------	--------	----	-------	----

$$\sum_{r=10}^{100} (br + c)$$

where b and c are constants.

The sum of this series is 7735

10 (b) (i) Show that
$$55b + c = 85$$

[4 marks]

$$=7$$
 556+6 = 85

10 (b) (ii) T	The 40th to	erm of the	series is 4	times the	2nd term.
---------------	-------------	------------	-------------	-----------	-----------

Find the values of b and c.

[4 marks]

$$\Rightarrow$$
 $c = \frac{5}{3}b$

Do not write outside the floor

The region R enclosed by the lines x = 1, x = 6, y = 0 and the curve

$$y = \ln(8 - x)$$

is shown shaded in Figure 3 below.

Figure 3

All distances are measured in centimetres.

Use a single trapezium to find an approximate value of the area of the shaded region, giving your answer in cm² to two decimal places.

[2 marks]

Question 11 continues on the next page

Shape B is made from four copies of region R as shown in Figure 4 below. 11 (b)

outside the box

Shape B is cut from metal of thickness 2 mm

The metal has a density of 10.5 g/cm3

Use the trapezium rule with six ordinates to calculate an approximate value of the mass of Shape B.

Give your answer to the nearest gram.

[5 marks]

= 619.

c)	Without further calculation, give one reason why the mass found in part (b) may be:
11 (c) (i)	an underestimate, [1 mark]
	The curve in figure 3 is concave.
c) (ii)	an overestimate. [1 mark]
	The numbers have been rounded.

Turn over ▶

Do not wen

12 A curve C has equation $x^3 \sin y + \cos y = Ax$ where A is a constant, C passes through the point $P(\sqrt{3}, \frac{\pi}{6})$ Show that A=212 (a) [2 marks] $(\sqrt{3})^3 \sin \frac{3}{6} + \cos \frac{5}{6} = A\sqrt{3}$ $\Rightarrow 3\sqrt{3} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} = A\sqrt{3}$ **12 (b) (i)** Show that $\frac{dy}{dx} = \frac{2 - 3x^2 \sin y}{x^3 \cos y - \sin y}$ [5 marks] dy data Implicat differentiation: $3x^2 \sin y + x^3 \cos y \frac{dy}{dx} - \sin y \frac{dy}{dx} = 2$ => dy (x3 cosy - sury) = 2 - 3x2 sury ay/dx = 2-3x2 suny x 3 cosy - sing

	the gradient of the			
		121		
	dx at P=		x3 sun 7/6 1 005 1/16 - sun 1/1	[2 marks
	=	- 5/8		
-				
(iii) The tange	nt to C at P intersect	ts the x-axis	at Q.	
oracin de la composition della	eact x-coordinate of			
grad	unt of tang	unt =	8/5	[4 marks
Equo	tion of lang	ent =7	y - 7/6 = 1	1/5 (x- J3)
ret	y = 0 =7	x = 13	+47/15	
_				
-				
-				

13 The function f is defined by

$$f(x) = \frac{2x+3}{x-2} \qquad x \in \mathbb{R}, x \neq 2$$

13 (a) (i) Find f -1

$$Ux \quad y = \frac{2x+3}{x-2}$$
 [3 marks]

$$=7 x = 3 + 2y$$

So
$$f^{-1} = \frac{3+2x}{x-2}$$

13 (a) (ii) Write down an expression for ff(x).

[1 mark]

$$ff(x) = \infty$$

Do not write	
DUESION (THE	
dox	

13 (b) The function g is defined by

$$g(x) = \frac{2x^2 - 5x}{2}$$
 $x \in \mathbb{R}, \ 0 \le x \le 4$

13 (b) (i) Find the range of g.

[3 marks]

x=- 1.5625

range : [-1.5625,6]

13 (b) (ii) Determine whether g has an inverse.

Fully justify your answer.

[2 marks]

: g(x) is a many to one function so it dog

not have an inverse.

Turn over >

13 (c)	Show	that
--------	------	------

$$gf(x) = \frac{48 + 29x - 2x^2}{2x^2 - 8x + 8}$$

[4 marks]

$$9 \neq (x) = 2 \left(\frac{2x+3}{x-2}\right)^2 - 5 \left(\frac{2x+3}{x-2}\right)$$

2

$$= 2\left(4x^{2}+12x+9\right)-\left(\frac{10x+15}{x-2}\right)$$

2

$$= 2 (4x^{2} + 12x + 9) - (10x + 15)(x-2)$$

$$(x-2)^{2} (x-2)^{2}$$

2

$$= \frac{1}{2} \times 8x^{2} + 24x + 18 - 10x^{2} + 20x - 15x + 30$$

$$(x-2)^{2}$$

$$=$$
 48 + 29x - 2x²

 $2(x-2)^{2}$

$$= 48 + 29x - 2x^{2}$$

It can be shown that fg is given by 13 (d)

$$fg(x) = \frac{4x^2 - 10x + 6}{2x^2 - 5x - 4}$$

with domain $\{x \in \mathbb{R} : 0 \le x \le 4, x \ne a\}$

Find the value of a.

Fully justify your answer.

[2 marks]

$$2x^{2}-5x-4=0$$

 $x = 5 \pm \sqrt{57}$

Turn over for the next question

14 The function f is defined by

$$f(x) = 3^x \sqrt{x} - 1$$
 where $x \ge 0$

14 (a) f(x) = 0 has a single solution at the point $x = \alpha$

By considering a suitable change of sign, show that α lies between 0 and 1

[2 marks]

So flo) < 0 and fli), it shows that there is

a saution in the interval (011).

14 (b) (i) Show that

$$f'(x) = \frac{3^x (1 + x \ln 9)}{2\sqrt{x}}$$

[3 marks]

$$f'(x) = 3^x \cdot \frac{1}{2} x^{-b_2} + 3^x \ln 3 \cdot x^{v_2}$$

$$= 3^* \left(2\sqrt{x} + \frac{2\sqrt{x} \cdot \sqrt{x}}{2\sqrt{x}} \right)$$

$$= 3^{x} \left(2\sqrt{x} + \frac{2x \ln 3}{2\sqrt{x}} \right)$$

Do	not	100	Ť
DM			
	āo.	,	

14 (b) (ii)	Give your answer to five decimal places.	
	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	2 marks
	Centi = In +(Ik)	
	$\Rightarrow x_2 = 1 - \frac{f(1)}{f'(x_n)} = 0.5829716$	
	$\Rightarrow x_3 = 1 - f(x_0) = 0.42465 (5d.6)$	P)
	#1(x2)	
	V 	
14 (b) (iii)		
4 (b) (iii)	A	[2 marks
4 (b) (iii)	Explain why the Newton-Raphson method fails to find α with $x_1=0$ It would not converge as all values of $x_1=0$	[2 marks
4 (b) (iii)	It would not converge as all values	[2 marks
4 (b) (iii)	It would not converge as all values	[2 marks
4 (b) (iii)	It would not converge as all values	[2 marks
4 (b) (iii)	It would not converge as all values	[2 marks
14 (b) (iii)	It would not converge as all values	[2 marks
4 (b) (iii)	It would not converge as all values	[2 marks
14 (b) (iii)	It would not converge as all values	[2 marks

Show that the exact area of the shaded region is

6ln4-5

Fully justify your answer.

[10 marks]

Interception of
$$y = 6 - e^{\frac{x}{2}}$$
 and $x - axis$.

$$6 - e^{\frac{x}{2}} = 0$$

$$= 3 e^{\frac{x}{2}} = 6 = 7 \frac{x}{2} = 106 = 7 x = 2106$$

intersect:

=7
$$e^{x} = 6 - e^{x/2} = 7 e^{x} + e^{x/2} - 6 = 0$$

=7 $(e^{x} + 3)(e^{x/2} - 2) = 0$
=7 $e^{x/2} \neq -3$, so $e^{x/2} = 2 = 7 \times = 2 \ln 2 (= \ln 4)$

Do not write
notable the
tion

Area = 50 6-	et-etdx
$= \left[6x - 2 \right]$	et et
	e 10 - (-2e - e °)
	4-4)-(-2-1) 5 6 In 4-5

END OF QUESTIONS

