GCSE MARKING SCHEME

AUTUMN 2019

GCSE
MATHEMATICS - NUMERACY UNIT 2 - INTERMEDIATE TIER 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Mathematics - Numeracy Unit 2: Intermediate Tier	Mark	Comments

4(a)(i) $33 \times 6 / 11$ or $6 \times 33 \div 1118$ (friends)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	ISW Allow: - 18 friends 12 dogs for M1 A1 - sight of 18/33 for M1 A0 - 18 12 for SC1
4(a)(ii) $\frac{2}{3} \times \frac{6}{11}$ or $\frac{2}{3} \times \frac{18}{(33)}$ $\frac{36}{99} \text { or } \frac{12}{33} \text { or } \frac{4}{11}$	M1	FT 'their 18' $2 / 3 \times 18$ leading to an answer of 12 or a final answer of 12 implies M1 ISW If no marks, award SC1 for sight of $12 / 18$
4(b) $21: 13: 6$	B1	Mark final answer Allow 21 dogs : 13 cats : 6 fish Do not accept 21 dogs 13 cats 6 fish
5(a) 1:1000000	B1	
$5(\mathrm{~b})$ (Average speed in $\mathrm{km} / \mathrm{h}=) \frac{22}{25 / 60}$ or $\frac{22}{25} \times 60$ or $\quad \stackrel{22}{\div} \div 60$ $52.7(\mathrm{~km} / \mathrm{h})$ to $53(\mathrm{~km} / \mathrm{h})$	M2	Allow M2 for sight of correct method, including premature approximation (e.g. using 25/60 = 0.4(166...) M1 for any one of: - sight of $22 /(0)$. - sight of $22 \div(0)$. - for answer of $0.88(\mathrm{~km} / \mathrm{min})$ - for answer of 88 Treat use of 2.2 instead of 22 as MR-1 on accuracy mark only

6(a) Descriptions of no correlation, e.g. 'no relationship', 'no correlation', 'none', 'no connection'				B1	Allow, e.g. 'no' Do not accept, e.g. '(all) scattered (about)' 'random', 'neutral', 'no pattern', 'varied correlation', 'mixed correlation' Allow if a correct response is given with one of the phrases listed above. Do not allow a correct response with an incorrect response, e.g. 'none but slightly positive'
6(b)				B4	All entries correct B3 for any 8 or 9 entries correct B2 for any 5, 6 or 7 entries correct B1 for any 3 or 4 entries correct Penalise -1 only if entries are consistently reversed in the table
	Name	Height (cm)	Number		
	Gwenda	145	88		
	Daniel	166	88		
	Lotte	130	90		
	Iona	171	66		
	Steffan	171	24		

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{gathered}
7(\mathrm{a}) \text { (Buy } 1 \text { get } 1 \text { free, cost of } 3 \text { pizzas) }(£) 17.6(0) \\
(35 \% \text { off } 3 \text { pizzas) } 3 \times 8.8(0)-0.35 \times 3 \times 8.8(0) \\
\text { or } 0.65 \times 3 \times 8.8(0)
\end{gathered}
\] \\
(£)17.16 and selecting ' \(35 \%\) off'
\end{tabular} \& B1
M3

A1 \& | M2 for sight of |
| :--- |
| - $0.35 \times 3 \times 8.8(0)(=£ 9.24)$ or equivalent |
| - $0.65 \times 8.8(0) \quad(=£ 5.72)$ or equivalent |
| M1 for any of |
| - $3 \times 8.8(0)(=£ 26.40)$ |
| - $0.35 \times 8.8(0) \quad(=£ 3.08)$ or equivalent |
| - FT for $3 \times$ 'cost their reduced priced pizza' correctly evaluated provided 'cost their reduced priced pizza' < $£ 8.80$ |
| CAO for $(£) 17.16$ with a conclusion, but FT conclusion from 'their $£ 17.60$ ' with ($£$)17.16 comparison |

\hline | Organisation and communication |
| :--- |
| Writing | \& OC1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each |
| step of their response |
| - lay out their explanations and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc. |

\hline | 7(b) Explanation, e.g. '(even number of pizzas gives) 50% off (which is better than 35%)', |
| :--- |
| ' 50% off (is better than 35% off)', |
| 'with an even number of pizzas he will get half of them free (which is more than 35% free)' | \& E1 \& | Accept explanation based on a different even number pizzas, including buying 20 getting 10 free |
| :--- |
| Allow, e.g. |
| 'he would (only) pay for 5 pizzas (not 10)', 'half of the pizzas are free' 'he would (only) pay for half the pizzas', 'get 5 pizzas free', |
| 'the more pizzas you get, the better this option is' ' 2 is an even number and goes into 10 exactly' |
| Do not ignore contradictions |

\hline
\end{tabular}

| 8(a)(i) (\$)1.80 and (\$) 1.80 | B2 |
| :--- | :---: | :---: |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
9(\mathrm{a})
\] \\
in any orientation
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow: \\
- intention of straight lines and right angles \\
- two equal rectangles joined \\
Do not accept if end elevation also drawn, unless plan view is labelled
\end{tabular} \\
\hline \begin{tabular}{l}
9(b)(i) (Concrete costs) \(66 \times 39\) (p) or equivalent \\
(Builder charges) \(27+1 / 3 \times 27\) or equivalent \\
(Total cost of making the step) \((£) 61.74\)
\end{tabular} \& M1
M1

A1 \& | (=£25.74) |
| :--- |
| Allow M1 for sight of a multiplication involving the digits 66... with $39(p)$ or equivalent $(=£ 36)$ |
| Allow methods breaking down the hour to find the cost for 20 minutes provided sufficient evidence seen Do not allow: |
| - $27+0.3 \times 27=27+8.10=£ 35.10$ |
| - $27+1 / 3 \times 27=27+8.10=£ 35.10$ |
| Allow |
| $27+0.33 \times 27=£ 35.91$ or better |
| CAO |

\hline | 9(b)(ii) |
| :--- |
| (Area cross-section) as sum of two products: | \& M2 \& | Check diagram for working |
| :--- |
| Accept a similar method given by an equation or expressions |
| M1 for sight of either: |
| - difference or sum of 2 products, with 1 correct |
| - sum of 3 products with 2 correct |
| - all products correct but no attempt to sum |
| CAO |
| FT 66000 - 'their 1650 ' provided 'their 1650 ' is dimensionally correct |
| ISW |
| FT 66000 - 'their 1650 ' only allowing rounding or truncation of decimals |

\hline
\end{tabular}

10(a)(i) $\quad 11$ to 15	B1	
$\begin{aligned} & \text { 10(a)(ii) Midpoints } 3,8,13,18 \\ & \begin{array}{l} 3 \times 3+8 \times 7+13 \times 12+18 \times 18 \\ (9+56+156+324=545) \end{array} \\ & \quad \div 40 \end{aligned}$	B1 M1 m1 A1	FT 'their midpoints' provided at least 3 of 'their 4 midpoints' lie within the appropriate group, including lower and upper bounds Use of lower bound gives 465 Use of upper bounds gives 625 Allow 13 or 14 (mugs) from correct working Use of lower bounds gives 11.625 (allow 11 or 12) use of upper bounds gives 15.625 (allow 15 or 16)
10(b) (Volume) $\pi \times 4.3^{2} \times(11.8-2)$ or equivalent Answer in the range $568\left(\mathrm{~cm}^{3}\right)$ to $569.4\left(\mathrm{~cm}^{3}\right)$	M2	Accept methods shown in stages Allow M1 for sight of $\pi \times 4.3^{2} \times 11.8$ or $\pi \times 4.3^{2} \times 2$, including if embedded or included with incorrect working. CAO. Accept $\frac{90601 \pi}{500}$ or $181.2(02 ..) \pi$ Provided M1 previously awarded then also award SC1 for an answer in the range - 684.8 to $686\left(\mathrm{~cm}^{3}\right)$ (for the volume of the mug ignoring the 2 cm) or - 682.8 to $684\left(\mathrm{~cm}^{3}\right)$ (for the volume of the mug subtract 2 cm) but do not ignore further working in either case

11(a)(i) (Circumference of a wheel) $\pi \times 6.4$		Ignore inclusion of ' $\times 4$ ' (for 4 wheels) for M1 M2 (A0)
	M1	
(Number of revolutions is) $2340 \times 100 \div(\pi \times 6.4)$ or $2340 \div(\pi \times 0.064)$ or equivalent	M2	FT 'their circumference' provided 'their calculation of circumference' includes π in the calculation (with consistent place value for M2, with inconsistent place value for M1) M1 for appropriate calculation but containing a place value error, e.g. $2340 \div(\pi \times 6.4)$ or $234000 \div(\pi \times 0.064)$ or $2340 \div(\pi \times 0.64)$
(Number of revolutions is) Answer in the range 11636(.69...) to 11644(.1083)	A1	CAO, except allow an answer of 11700 (from premature approximation of circumference to 20 cm) Mark final answer (Do not ignore further work such as $\div 4$)
11(a)(ii) Assumption, e.g. 'rode all the way', 'didn't carry the skateboard', 'was able to use his skateboard' 'skated in a straight line', 'each wheel rotates the same number of times' 'wheels perfectly circular', 'no wear on the wheels', 'the wheels are all on the ground throughout'	E1	Allow, e.g 'went directly to Sab's house' Do not accept, e.g. ' 2340 m is not exact', 'he doesn't stop on his journey', 'constant speed'
11(b) (Mass of Finbar's skateboard deck) $2.6 \times 1800 \times 1.2$ AND (Mass of Sab's skateboard deck) $0.7 \times 1600 \times 1.4$	M3	Accept shown in stages but not if embedded within incorrect working M2 for one of the following provided not embedded within incorrect working, may be shown in stages: (Mass of Finbar's skateboard deck) $2.6 \times 1800 \times 1.2$ OR (Mass of Sab's skateboard deck) $0.7 \times 1600 \times 1.4$ M1 for any one of the following, including embedded within incorrect working, may be shown in stages: - (Finbar's deck volume) 1800×1.2 ($=2160$) - (Sab's deck volume) 1600×1.4 ($=2240$) - $\quad(\mathrm{g} \mathrm{percm}) 2.6 \times 1800(=4680)$ - $(\mathrm{g} \mathrm{per} \mathrm{cm}) 0.7 \times 1600(=1120)$
(Mass of Finbar's skateboard deck) 5616 (g) AND (Mass of Sab's skateboard deck) 1568 (g)	A1	CAO
(Difference is) $4048(\mathrm{~g})$	A1	Answer must be in grams FT 'their 5616' - 'their 1568 ' provided M2 previously awarded

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \text { 12(a)(i) Height of the gate } 110(\mathrm{~cm}) \text { or } 1.1(0 \mathrm{~m}) \\
& \\
& \left(\text { Diagonal }^{2}=\right) 2^{2}+1.1^{2} \text { or } 200^{2}+110^{2} \\
& \begin{array}{ll}
\text { Diagonal }^{2}=5.21 & \text { or }(\text { Diagonal }=) \sqrt{ } 5.21 \\
\text { or } \text { Diagonal }^{2}=52100 & \text { or (Diagonal }=) \sqrt{ } 52100 \\
\text { or } 228 .(\ldots \mathrm{cm})
\end{array} \\
& (\text { Diagonal }=) 2.28(\ldots \mathrm{~m}) \text { or } 2.3(\mathrm{~m})
\end{aligned}
$$ \& B1
M1

A1

A1 \& | Allow other estimates of height of the gate (100 cm to 110 cm inclusive) |
| :--- |
| If units are given they must be correct |
| If incorrect conversion of units seen later, B0 and FT for possible M1 A1 A1 |
| FT 'their derived 110 or 1.1(0)' provided units are consistent in the application of Pythagoras' Theorem Allow use of 190 cm to 200 cm for the width of the gate in calculating the diagonal length |
| Answer must be in metres Allow truncation to 2.2(m) Do not accept truncation to $2(\mathrm{~m})$ FT from M1 for the correctly evaluated square root of 'their 5.21 ' provided 'their answer' $>2(\mathrm{~m})$ for possible A1 |

\hline 12(a)(ii) Assumption, e.g. 'diagonal plank went to each end', 'thought of the planks as lines', 'that it is a right angle (triangle)', 'it goes from corner to corner' \& E1 \& | Allow, e.g. |
| :--- |
| 'no thickness' |
| (allow as implying width) |
| 'width (or length) of gate is not exact' (could mean diagonal plank not quite touching across full width of the gate) |
| Do not accept, e.g. |
| 'all planks have the same thickness' (as not an assumption whether meaning width or not), |
| 'the gaps are not exact' |
| (as question defines the gaps) 'lengths are not exact', 'that this diagonal plank is longer than the others', 'it's straight' |
| Ignore additional spurious comments |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& M1
m2

A1 \& | Accept for sight of $(£) 5.13$ |
| :--- |
| Accept for sight of (£)6.84 |
| m 1 for 2 out of the 3 terms correct |
| CAO |
| If no marks, award SC1 for sight of ($8.55 \div 5=£$) 1.71 or $((3+4+5) \times 8.55 \div 5=£) 20.52$ |

\hline | Alternative method $\begin{array}{r} (2 \times 5+5 \times 3+4) \times 8.55 \\ \div 5 \end{array}$ |
| :--- |
| (£) 49.59 | \& \[

$$
\begin{aligned}
& M 1 \\
& m 1 \\
& m 1 \\
& \text { A1 }
\end{aligned}
$$
\] \& m1 in either order CAO

\hline
\end{tabular}

