GCSE MARKING SCHEME

AUTUMN 2019

GCSE
MATHEMATICS - NUMERACY UNIT 2 - FOUNDATION TIER 3310U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2019 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2: Foundation Tier	Mark	Comments
$\begin{array}{ll} 1 .(\mathrm{a}) \vee & (£ 3.45) \\ & (£) 19.96 \\ & (£) 73.77 \\ & (£) 389.7(0) \\ & (£) 486.88 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	B0 for (£) 389.07 FT provided 3 derived values added to $(£) 3.45$ B0 for omission of ($£$)3.45 from 'their ($£$) 486.88 e.g. BO for ($£$) 483.43 if all other values correct.
1.(b) $0.25 \times(£) 486.88$ or equivalent (£)121.72	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT $0.25 \times$ 'their ($£$) 486.88 ' CAO (must be correct answer for $0.25 \times$ 'their ($£$) 486.88^{\prime}, answer may be rounded or truncated) ISW If MO, award SC1 for answer of £365.16 ($0.75 \times(£) 486.88)$
1.(c) 12 (calculators)	B2	B1 for 13 (calculators) or sight of 12.6(2...) OR sight of $(£) 164 \div(£) 12.99$ or equivalent Allow sight of $12 \times(£) 12.99=(£) 155.88$ OR $13 \times(£) 12.99=(£) 168.87$ for B1 If BO , then award SC1 for an answer of 42 calculators $(30+12)$
$\text { 2.(a) } 143 \times 0.65+50 \times 0.98$ (£)141.95	M2 A1	Allow M2 for $143 \times 65+50 \times 98$ M1 for $143 \times(0) .65(=(£) 92() 95$.$) OR$ $50 \times(0 .) 98(=(£) 49(.) 00))$ M1 for correct expression with mixed units e.g. $143 \times 0.65+50 \times 98$ CAO ISW Sight of unsupported 140.091 gains M2 A0 (BIDMAS error)

\begin{tabular}{|c|c|c|}
\hline ```
2.(b)}
(cost of 125 small letters = 125 < 0.65 =) (£) }81.2
(total cost of large letters =)
(£)119.47-81.25 (= (£)38.22)
(number of large letters =)
((£)38.22) }\div0.98\mathrm{ or equivalent
= 39 (large letters)

``` & B1
M1
m1

A1 & \begin{tabular}{l}
May be implied in later working \\
FT (£)119.47 - 'their (£) 81.25' \\
FT 'their (£) 38.22' \(\div 0.98\) \\
Accept \(3822 \div 98\) for m 1 \\
Allow m 1 for incorrect place value e.g. \(3822 \div 0.98\) \\
FT \(\left((£) 119.47\right.\) - their \(\left.81.25^{\prime}\right) \div 0.98\) \\
Accept embedded answers \\
Sight of \(125 \times(£) 0.65+39 \times(£) 0.98=(£) 119.47\) \\
gains B1M1m1A1
\end{tabular} \\
\hline \begin{tabular}{l}
Organisation and communication \\
Writing
\end{tabular} & OC1 & \begin{tabular}{l}
For OC1, candidates will be expected to: \\
- present their response in a structured way \\
- explain to the reader what they are doing at each \\
step of their response \\
- lay out their explanations and working in a way that is clear and logical \\
- write a conclusion that draws together their results and explains what their answer means \\
For W1, candidates will be expected to: \\
- show all their working \\
- make few, if any, errors in spelling, punctuation and grammar \\
- use correct mathematical form in their working \\
- use appropriate terminology, units, etc.
\end{tabular} \\
\hline 2. (c) 51 cm & B1 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
3.(a) Full explanation including appropriate calculation referring to \(\mathrm{kg} \leftrightarrow \mathrm{lb}\) conversion \\
e.g. "(Till is heavier because) 22lb is (about) 10 kg " \\
"(Tili is heavier because) 14.5 kg is (about) 31.9 lb \\
" 14.5 kg is more than 291bs because a kg is more than 2 lbs ". \\
"since 1 kilogram is more than 2 pounds, then 22 lbs is less than 11 kg "
\end{tabular} & E2 & \begin{tabular}{l}
Allow E1 for partial explanation e.g. \\
"...(because 1 kg is about) 2.2 lb " \\
"......(because 1 lb is about) \(0.4(5 \ldots)\).kg " \\
".....because 1 kilogram is more than 2 pounds" \\
" 221 b is about 11 kg " \\
Allow E1 for sight of \(22 \div 2.2\) or \(14.5 \times 2.2\) but not calculated \\
Do not accept \\
"kg is heavier than lb" \\
"....because 1 kg is more than 1 lb "
\end{tabular} \\
\hline 3.(b) (i) 600(g) & B2 & Accept 0.6(00) kg B1 for sight of 250 (g) AND 350 (g) Mark final answer \\
\hline \begin{tabular}{l}
3.(b) (ii) \\
For sight of \(18000(\mathrm{~g})\) OR \(0 \cdot 6(00) \mathrm{kg}\) \(18000 \div 600\) OR \(18 \div 0 \cdot 6\) or equivalent
\end{tabular} & B1
M1


A1 & \begin{tabular}{l}
\[
\begin{aligned}
& \text { FT from (b)(i) for possible B1M1A1 } \\
& \text { FT 'their } 600 \text { ' } \div 1000 \\
& \text { FT 'their } 18000 \text { ' 'their } 600 \text { ' or } 18 \div \text { 'their } 0 \cdot 6 \text { ' } \\
& \text { Allow M1A0 } 18 \div 600 \\
& \text { Award M1 for evidence of working with multiples of } \\
& 600 \text { with a target of reaching } 18000 \\
& \text { e.g. } 600,1200,1800 \ldots .
\end{aligned}
\] \\
Answer must be correct on FT from (b)(i) and from correct workings
\end{tabular} \\
\hline 4.(a) 36 minutes & B1 & \\
\hline 4.(b) Ten thousand, five hundred (and) thirty eight & B1 & \\
\hline \begin{tabular}{l}
4.(c) \(\checkmark\) Identifying 2252 steps in the table \\
(Number of steps \(=10538-2656)=7882\) (steps) \\
(Number of miles =) \(7882 \div 2252\) or equivalent
\[
=3 \cdot 5 \text { (miles) or } 31 / 2 \text { (miles) }
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
May be implied in later working \\
May be identified in the table (must be explicit) \\
FT 'their 7882' - 'their 2252' \\
Allow sight of \(3 \times 2252=6756\) OR \(4 \times 2252=9008\) \\
for M1 \\
Award M0 for \(10538 \div 2252\) OR \(2656 \div 2252\) \\
Accept embedded answers \(3.5 \times 2252=7882\) \\
Accept answers correct to 1 d.p rounded or truncated on FT
\end{tabular} \\
\hline Alternative method Identifying 2252 steps in the table
\[
\begin{aligned}
&10538 \div 2252)-(2656 \div 2252) \\
&(=4.679 \ldots . .1 .179 \ldots . .) \\
&=3 \cdot 5(\text { miles }) \text { or } 31 / 2(\text { miles })
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M2 \\
A1
\end{tabular} & May be implied in later working May be identified in the table (must be explicit) M2 for complete method \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5. \(0.64 \times 125\) or \((100 \times) 78 / 125\) & M1 & Accept equivalent complete non calculator methods Allow \(64 \% \times 125\) but do not accept \(64 \%\) of 125 for M1 (unless 80 marks seen, in which case M1 A1) \\
\hline \[
80 \text { (marks) or } 62(.4 \%)
\] & A1 & \begin{tabular}{l}
Accept sight of 0.62(4) \\
Accept sight of \(80 / 125\) for M1, A1
\end{tabular} \\
\hline Conclusion e.g. & A1 & FT depends on M1 previously awarded \\
\hline 'Paulo (as \(80>78\) ), & & If working with both Ceri and Paulo, with one correct \\
\hline 'Paulo (sight of \(\frac{78}{125}\) and \(\frac{80}{125}\) ) & & and one incorrect, mark the correct method, i.e. possible M1, A1, but must be final A0 whatever conclusion is given \\
\hline 6(a) 4, 6 and 16 in this order & B2 & Answers in the table take precedence B1 for any 2 correct entries \\
\hline 6(b) 38 bottles & B1 & \\
\hline 6c) \(30 \times 2 \div 12\) or \(30 \times 1.5 \div 9\) or \(30 \div 6\) or equivalent & M1 & \\
\hline 5 & A1 & \begin{tabular}{l}
Accept an embedded 5 for M1 A1, provided it is not contradicted by their choice of final answer, in which case award M1 A0, e.g. \\
\(12 \times 5=60\) salmanazars M1 A0 \\
\(9 \times 5=45,9\) salmanazars, M1 A0 \\
\(9 \times 5=45, \mathrm{M} 1\) A1 \\
\(12 \times 5=60, \mathrm{M} 1\) A1
\end{tabular} \\
\hline 7. \(\qquad\) 17, 18, 18 as the three eldest 10, 12, \(\qquad\) as the two youngest & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \text { B1 }
\end{aligned}
\] & Must be eldest but not necessarily in order Must be youngest but not necessarily in order FT 'their 18 (eldest)' - 8 and 'their 18 (eldest)' - 6 respectively If \(\mathrm{BO}, \mathrm{BO}\) award SC 1 here for sight of 18,18 provided not other repeat ages \\
\hline \begin{tabular}{l}
(Mean) \((10+12+17+18+18) \div 5\) or \(75 \div 5\) \\
(-2)
\end{tabular} & M1 & FT 'their \(10+12+17+18+18\) ' 5 , provided it is a sum of 5 values divided by 5 \\
\hline (Coleen is) 13 (years old) & A1 & FT 'their \(75 \div 5\) ' -2 correctly evaluated, accepting rounded or truncated age, \\
\hline \begin{tabular}{l}
\[
8 \text { (a)(i) } 33 \times 6 / 11 \text { or } 6 \times 33 \div 11
\] \\
18 (friends)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
ISW \\
Allow: \\
- 18 friends 12 dogs for M1 A1 \\
- sight of 18/33 for M1 A0 \\
- 1812 for SC1
\end{tabular} \\
\hline \[
\begin{array}{rlrl}
\hline \text { 8(a)(ii) } \frac{2}{3} \times \frac{6}{11} & \text { or } & \frac{2}{3} \times \frac{18}{(33)} \\
& \frac{36}{99} & \text { or } \frac{12}{33} & \text { or } \frac{4}{11}
\end{array}
\] & M1 & \begin{tabular}{l}
FT 'their 18' \\
\(2 / 3 \times 18\) leading to an answer of 12 or a final answer of 12 implies M1 \\
ISW \\
If no marks, award SC1 for sight of \(12 / 18\)
\end{tabular} \\
\hline 8(b) 21:13:6 & B1 & \begin{tabular}{l}
Mark final answer \\
Allow 21 dogs : 13 cats : 6 fish \\
Do not accept 21 dogs 13 cats 6 fish
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 9(a) & & & 000000 & B1 & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
9(b) (Average speed in \(\mathrm{km} / \mathrm{h}=) \frac{22}{25 / 60}\) or \(\frac{22}{25} \times 60\) or \(\underset{25 \div 60}{\stackrel{22}{\div}}\) \\
52.7 (km/h) to \(53(\mathrm{~km} / \mathrm{h})\)
\end{tabular}} & M2 & \begin{tabular}{l}
Allow M2 for sight of correct method, including premature approximation (e.g. using 25/60 = 0.4(166...) \\
M1 for any one of: \\
- sight of \(22 /(0)\). \\
- sight of \(22 \div(0)\). \\
- for answer of \(0.88(\mathrm{~km} / \mathrm{min})\) \\
- for answer of 88 \\
Treat use of 2.2 instead of 22 as MR-1 on accuracy mark only
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
10(a) Descriptions of no correlation, e.g. 'no relationship', \\
'no correlation', 'none', 'no connection'
\end{tabular}} & B1 & \begin{tabular}{l}
Allow, e.g. \\
'no' \\
Do not accept, e.g. \\
'(all) scattered (about)' \\
'random', \\
'neutral', \\
'no pattern', \\
'varied correlation', \\
'mixed correlation' \\
Allow if a correct response is given with one of the phrases listed above. \\
Do not allow a correct response with an incorrect response, e.g. 'none but slightly positive'
\end{tabular} \\
\hline \multirow[t]{8}{*}{10(b)} & & & & \multirow{8}{*}{B4} & \multirow[b]{8}{*}{\begin{tabular}{l}
All entries correct \\
B3 for any 8 or 9 entries correct \\
B2 for any 5, 6 or 7 entries correct \\
B1 for any 3 or 4 entries correct \\
Penalise - 1 only if entries are consistently reversed in the table
\end{tabular}} \\
\hline & Name & Height & Number & & \\
\hline & Gwenda & 145 & 88 & & \\
\hline & Daniel & 166 & 88 & & \\
\hline & Lotte & 130 & 90 & & \\
\hline & Iona & 171 & 66 & & \\
\hline & Steffan & 171 & 24 & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
11(a) (Buy 1 get 1 free, cost of 3 pizzas) \\
(£) 17.6 (0) \\
(35\% off 3 pizzas)
\[
\begin{aligned}
& 3 \times 8.8(0)-0.35 \times 3 \times 8.8(0) \\
& \text { or } 0.65 \times 3 \times 8.8(0)
\end{aligned}
\] \\
(£) 17.16 and selecting ' \(35 \%\) off'
\end{tabular} & B1
M3





A1 & \begin{tabular}{l}
M2 for sight of \\
- \(0.35 \times 3 \times 8.8(0)(=£ 9.24)\) or equivalent \\
- \(0.65 \times 8.8(0) \quad(=£ 5.72)\) or equivalent \\
M1 for any of \\
- \(3 \times 8.8(0)(=£ 26.40)\) \\
- \(0.35 \times 8.8(0) \quad(=£ 3.08)\) or equivalent \\
- FT for \(3 \times\) 'cost their reduced priced pizza' correctly evaluated provided 'cost their reduced priced pizza' < \(£ 8.80\) \\
CAO for ( \(£\) ) 17.16 with a conclusion, but FT conclusion from 'their \(£ 17.60\) ' with \((£) 17.16\) comparison
\end{tabular} \\
\hline \begin{tabular}{l}
11(b) Explanation, e.g. '(even number of pizzas gives) \(50 \%\) off (which is better than \(35 \%\) )', \\
' \(50 \%\) off (is better than \(35 \%\) off)', 'with an even number of pizzas he will get half of them free (which is more than \(35 \%\) free)'
\end{tabular} & E1 & \begin{tabular}{l}
Accept explanation based on a different even number pizzas, including buying 20 getting 10 free \\
Allow, e.g. \\
'he would (only) pay for 5 pizzas (not 10)', 'half of the pizzas are free' 'he would (only) pay for half the pizzas', 'get 5 pizzas free', \\
'the more pizzas you get, the better this option is' ' 2 is an even number and goes into 10 exactly' \\
Do not ignore contradictions
\end{tabular} \\
\hline
\end{tabular}```

