Surname
First name(s)

Centre Number	Candidate Number
0	

GCSE
3300U30-1

MATHEMATICS
 UNIT 1: NON-CALCULATOR INTERMEDIATE TIER

1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.
Take π as $3 \cdot 14$.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 10, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

Formula List - Intermediate Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

1. Complete each row of the following table.

The first row has been completed for you.

Place	Temperature at $10 \mathrm{a} . \mathrm{m}$.	Change	Temperature at $6 \mathrm{p} . \mathrm{m}$.
Cwmbran	$2^{\circ} \mathrm{C}$	Down $4^{\circ} \mathrm{C}$	$-2^{\circ} \mathrm{C}$
Llanelli	$-3^{\circ} \mathrm{C}$	Down $1^{\circ} \mathrm{C}$	
Llanidloes	$-4^{\circ} \mathrm{C}$		$-1^{\circ} \mathrm{C}$
Porthmadog		Up $4^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$

2. Write $7 \%, \frac{3}{5}$ and 0.3 in ascending order.

You must show all your working.
\qquad
3. (a) Calculate the value of $3 x+4 y$ when $x=-6$ and $y=5$.
(b) Simplify the expression $9 g-4 f-3 g-5 f$.
\qquad
\qquad
(c) Solve the equation $3 m-7=8$.
\qquad
\qquad
\qquad
(d) Expand $4(3 x-5)$.
4. The mean of two numbers is 7 .

The range of these two numbers is 8 .
What are these two numbers?

\qquad
\qquad
\qquad
\qquad
\qquad

5.

Diagram not drawn to scale

Calculate the size of angle x.
Hence, give the bearing of point B from point A.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad - Bearing of point B from point $A=$ \qquad。
6. A group of pupils is asked whether they can speak Welsh, French, both languages, or neither language.

Their answers are shown in the Venn diagram below.
The universal set, ε, contains all the pupils in the group.

(a) How many of the pupils cannot speak French?
(b) One pupil from the group is chosen at random.

What is the probability that this pupil can speak both Welsh and French?
7. Find the whole number which satisfies all of the following conditions:

- It is a whole number between 1 and 40 inclusive.
- The number is a multiple of 4 but not a multiple of 8 .
- 3 is a factor of this number.
- The number is a square number.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The whole number is
8. (a) What is the total mass when 534 g is added to 3.5 kg ? Circle the correct answer.
4.034 g
4.034 kg
537.5 g
537.5 kg
884 g
 \qquad
(b) What is the total length when 35 cm is added to 7.8 m ? Circle the correct answer.
113 cm
$42 \cdot 8 \mathrm{~m}$
42.8 cm
815 cm
815 m
(c) How many mm^{3} are there in $4 \mathrm{~cm}^{3}$?

Circle the correct answer.
$0.4 \mathrm{~mm}^{3}$
$4 \mathrm{~mm}^{3}$
$40 \mathrm{~mm}^{3}$
$400 \mathrm{~mm}^{3}$
$4000 \mathrm{~mm}^{3}$
9. (a) Express 60 out of 300 as a percentage.

Answer is \qquad \%
(b) Some people were asked a question.
40% of the people answered 'Yes'.
A sketch of a pie chart showing this information is shown below.
Calculate the size of angle x so that the pie chart can be drawn accurately.

Diagram not drawn to scale
\qquad。
10. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

The diagram below shows a rectangle $A B C F$ and a trapezium $C D E F$. $A F=7 \mathrm{~cm}, E D=8 \mathrm{~cm}$ and the perpendicular distance between $F C$ and $E D$ is 6 cm . The area of the rectangle $A B C F$ is $91 \mathrm{~cm}^{2}$.

Calculate the area of the trapezium $C D E F$.
You must show all your working.
11. 200 young people are taking part in a conference held at Aberystwyth.
(a) One of the young people is chosen at random to be the chairperson.

Complete the table below to find the probability that the person chosen lives outside the United Kingdom (UK).

	North Wales	Mid Wales	South Wales	Elsewhere in the UK	Outside the UK
Probability	0.2	0.3	0.25	0.15	

(b) How many of the 200 young people live in Mid Wales?
12. (a) Describe fully the single transformation that transforms triangle A onto triangle B.

(b) (i) Translate triangle A using the column vector $\binom{5}{-6}$.

(ii) Write down the column vector that will reverse the translation in part (i).
13. The exterior angle of a regular polygon is 36°.
(a) How many sides does the polygon have?
\qquad
\qquad
\qquad
\qquad
(b) Calculate the sum of all the interior angles of this regular polygon.
\qquad
\qquad
\qquad
\qquad
14. (a) Write down the first three terms of the sequence whose nth term is given by $n^{2}-6$. [2]

(b) Write down an expression for the nth term of the following sequence.

$$
5, \quad 11, \quad 17, \quad 23,
$$

15. Circle the correct answer for each of the following.
$\begin{array}{llllll}\text { (a) } 81= & & & \\ & 3^{3} & 9^{3} & 9^{4} & 18^{2} & 3^{4}\end{array}$
9^{3}
94
18^{2}
3^{4}
(b) $2 \cdot 1^{5}=$ $32 \cdot 5$
$10 \cdot 5$
$40 \cdot 84101$
$30 \cdot 84101$ $32 \cdot 1$
(c) $(12 \cdot 96)^{\frac{1}{2}}=$
\qquad
\qquad
6.48
$3 \cdot 6$
4.32
$3 \cdot 3$
$2 \cdot 16$
[1]]

16. (a) Using only a ruler and a pair of compasses, construct a triangle $P Q R$, so that it satisfies both of the following conditions:

- $P \widehat{Q} R=60^{\circ}$,
- $P Q=7 \mathrm{~cm}$.

Side $Q R$ has been drawn for you.
(b) Using only a ruler and a pair of compasses, construct a line from the point A that is

Examiner perpendicular to the line LM.

17. Dylan is having a weekend break in Wrexham. The probability that he will visit Erddig Gardens is $0 \cdot 7$.
The probability of Dylan going to the Bersham Heritage Centre is independent of him visiting Erddig Gardens.

The probability that he visits Erddig Gardens and goes to the Bersham Heritage Centre is 0.28 .
(a) Complete the following tree diagram.
\qquad
\qquad
\qquad

(b) Calculate the probability that Dylan visits Erddig Gardens but does not go to the Bersham Heritage Centre.
\qquad
\qquad
\qquad
18. In the following formulae, each measurement of length is represented by a letter.

Consider the dimensions implied by the formulae.
For each case, write down whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

Formula	Formula could be for
$3 \cdot 14 r^{2}-d w$	area
$w^{3}+r^{2} d$	
$3 w+2 d+h$	
$d h r+5 d^{3}$	
$4 d+\pi r^{2}$	
$\frac{d w h}{r}$	\ldots

19. (a) Factorise $x^{2}+4 x-21$. Hence, solve $x^{2}+4 x-21=0$.
(b) Solve the equation $\frac{2 x-3}{5}+\frac{4 x+5}{2}=\frac{11}{2}$.
20. A cuboid has dimensions of $40 \mathrm{~mm}, 25 \mathrm{~mm}$ and 12 mm . All of these measurements are correct to the nearest mm .

Four of these cuboids are stacked together as shown below.

(a) Write down the greatest possible value of length a. Give your answer in mm.
(b) Calculate the greatest possible value of length b. Give your answer in mm.
\qquad
\qquad
\qquad
(c) Calculate the least possible value of length c. Give your answer in mm.
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

$\begin{aligned} & \text { Question } \\ & \text { number } \end{aligned}$	Additional page, if required. Write the question number(s) in the left-hand margin.	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

