wjec cbac

GCSE MARKING SCHEME

AUTUMN 2019

GCSE MATHEMATICS – UNIT 1 HIGHER TIER 3300U50-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2019 MARK SCHEME

GCSE MATHEMATICS	B.Ø I	0
Unit 1: Higher Tier	Mark	Comments
1.(a) (Number of sides =) <u>360</u>	M1	
36		
= 10	A1	
1.(b) $(180 - 36) \times 10$ or equivalent	M1	F.T. 'their number of sides' if >2.
= 1440(°)	<u>A1</u>	
Alternative method.	N / 1	E.T. "their number of sides" if > 2
$(10-2) \times 180 \text{ or equivalent}$		
= -7440() 2 (a) Reflection in (the line) $x = -2$	R2	B1 for 'reflection' or 'reflected'
	02	B1 for sight of 'x = -2 ' or equivalent e g x + 2 =0
		(written, not simply drawn).
2.(b) (i) Correct translation.	B2	B1 for translation '5 right'.
		B1 for translation '6 down'.
		SC1 for 2 correct vertices.
2.(b) (ii) (-5)	B1	B0 for -5 (missing brackets) OR (-5,6)
6/		6
		B0 for $-\underline{5}$ with or without brackets.
	50	No F I from part (b)(I).
3.(a) -5 -2 3	B2	B1 for two correct (in correct position) OR
2 (b) En 1 er eguivelent	D0	B1 107 -0, -5, -2
S.(b) of - i of equivalent	D2	Mark final answer
4 (a) 3 ⁴	B1	
4 (b) 40.84101	B1	
4.(c) 3.6	B1	
5.(a) Correct construction of PQR = 60° .	M1	Correct construction arcs must be seen and angle
		drawn.
Correct triangle PQR drawn.	A1	PQ = 7 cm (±2mm) and triangle drawn.
		Allow non labelling of point P (unless position
		contradicted).
		Ignore extension of line QP if correct triangle
F (1) And so the A is the solution I I A of the solution		drawn.
5.(b) Arc, <u>centre A</u> , intersecting LM at two points	IVI 1	[Note to markers: These arcs may be identified
AND Intersecting arcs (equal radii) using the		by the fact that they will cross the line at 00° is
above two points as centres.		evidence of an inappropriate method 1
Line drawn	Δ1	
Alternative method	·····	
Using the properties of a kite.	M1	Note to markers: The arcs will alwavs intersect at
Intersecting arcs whose centres are any two points		a point that is a 'reflection of point A' in the line
on the line LM and respective radii equal in length to		ĹM.J
the distance from the points to the point A.		
	_	
Line drawn.	A1	

6.(a) 0.3 shown for	B1	
'Does not visit 'Erddig Gardens'.		
Use of 0.7 × = 0.28	M1	Implied by sight of 0.4
P(goes to 'Bersham Heritage Centre') = 0.4	A1	(on 'top branch' of the four on the right)
Second set of branches 0.4, 0.6, 0.4, 0.6	A1	F.T. 'their 0.4' BUT dependent on M1 gained.
		(i.e. M0A0A0 for 0.28 and 0.72 on branches.)
6.(b) 0.7 × 0.6	M1	F.T. $0.7 \times$ 'their 0.6 ' only if $0 <$ 'their 0.6 ' < 1
		,
= 0·42 ISW	A1	0·42 gains M1A1.
7. (area)		Must use the terminology given in the question.
Volume	B3	B3 for all 5 correct.
Length		B2 for 3 or 4 correct.
Volume		B1 for 2 correct.
None		B0 otherwise.
Area		
8.(a) $(x+7)(x-3)$	B2	B1 for (x 7)(x 3).
(x =) -7 AND (x =) 3	B1	Strict F.T. from their brackets.
		Allow the following.
		B2 for $x + 7 (=0)$ AND $x - 3 (=0)$ (B1)
		(x =) -7 AND (x =) 3 (B1)
		B1 for $x - 7$ (=0) AND $x + 3$ (=0) (B0)
		(x=)7 AND (x=)-3 (B1)FT
		P1 if only (x =) = 7 AND (x =) 2 scop (P1)
		ET until 2^{nd} error
8 (b) Correct method for clearing all three fractions	M1	May be seen in stages
b.(b) correct method for cleaning <u>all triffee</u> fractions.	171.1	May be seen in stages.
Accurate clearing of fractions AND	A1	Allow if all over a common denominator.
expansion of brackets on lhs.		May be seen in stages
		, ,
24x = 36 or equivalent.	A1	For collection of terms.
x = <u>36</u> or equivalent	A1	FT from 'their ax = b' ONLY <u>if M1 gained AND no</u>
24		more than one previous error.
		If no marks, allow SC1 for sight of
		2(2x - 3) + 5(4x + 5) or equivalent.
		(10)
		If ET anower is a whole number than it must be
		Shown as an integer.
		Allow a correct embedded answer of 1.5 of 1/2
		But penalise - I il followed by $X \neq 1.5$ of $1/2$.
		NOLE : An answer of 1.5 that is found without
		gaining M1 OR that is not embedded is zero
Q (a) 40.5	B1	IIIdINS.
9 (b) $(25.5 + 25.5 =)$ 51	B1	
9.(c) $(11.5 + 11.5=)$ 23	B1	

10. (Slant height of cone =) $\sqrt{(12^2 + 9^2)}$	M1	Method for finding hypotenuse.
= 15 (cm)	A1	Accept use of (3,4,5) x 3.
(Curved surface area of cone =) $\pi \times 9 \times 15$	M1	E T 'their derived slant height' (not 12)
$= 135 \pi (cm^2)$	A1	ISW. [For reference, $135 \pi = 423.9$]
		SC1 for an answer of 108 π (cm ²) [= 339.1(2)] (from taking 12 cm as the slant height)
(Curved surface area of hemisphere =)		An answer of 216 π (cm ²) [= 678.2(4)] (from including area of circle) gains M1 A1 SC1
$\frac{1}{2} \times (4 \times \pi \times 8^2) \text{ or equivalent}$ $= 128 \pi (\text{cm}^2)$	M1 A1	ISW. [128 π = 401.9(2)]
		SC1 for an answer of 256 π (cm ²) [= 803.8(4)] (from omitting ½) or for an answer of 192 π (cm ²) [= 602.8(8)] (from including area of circle).
		Penalise -1 once only if any A or SC marks have previously been awarded for (correct) <u>decimal</u> answers.
Cone (has the greater curved surface area)	B1	Do not accept an unsupported statement. F.T. 'their areas' provided at least M1 or SC1 awarded for <u>each</u> solid (regardless of any penalty for decimal answers). (For the cone, either M1 mark can contribute to this FT.)
Organisation and Communication.	OC1	 For OC1, candidates will be expected to: present their response in a structured way explain to the reader what they are doing at each step of their response lay out their explanation and working in a way that is clear and logical write a conclusion that draws together their results and explains what their answer means
Accuracy of writing.	W1	 For W1, candidates will be expected to: show all their working make few, if any, errors in spelling, punctuation and grammar use correct mathematical form in their working use appropriate terminology, units, etc

11. $I \alpha 1 / d^2$ OR $I = k / d^2$ or equivalent	B1	Allow $I \alpha k / d^2$
$5 = k / 2^2 \text{ OR } k = 20$ $I = 20 / d^2 \text{ OR } I = 20 / 0.5^2 \text{ or equivalent}$ I = 80 (lux)	M1 M1 A1	M1 implies B1. F.T. (for possible B0 M2 A0) for use of $I \alpha d^2$ or $I \alpha 1 / d^n$ with $n > 0$ and $n \neq 2$. CAO.
		Use of $I \alpha$ 1 / d , leading to I = 10 / d (or an answer of I = 20 (lux)) is awarded B0 FT M2 A0.
		Use of $I \alpha d^2$, leading to $I = 1.25 d^2$ (or an answer of $I = 0.3125$ (lux)) is awarded B0 FT M2 A0.
		Use of $I \alpha 1 / \sqrt{d}$, leading to $I = 5\sqrt{2} / \sqrt{d}$, (or an answer of $I = 10$ (lux)) is awarded B0 FT M2 A0.
12. $CAD = 2x$	B1	Check diagram. (If this is the only B mark awarded, then $2x$ marked on diagram must be unambiguous. Otherwise, ignore spurious angles
(Reason =) Alternate segment (theorem)	E1	Dependent on B1. Allow 'opposite segments'. Do not accept 'alternate angles' or 'opposite angles'.
BCD = 180 - 3x OR $BCD = 3(60 - x)$	B1	F.T. 180 – (x + 'their <i>CAD</i> '). Must be in simplest form. Mark final answer e.g. do not accept 60 – x or x = 60
(Reason =) Opposite angles in a cyclic quadrilateral (add up to 180°)	E1	If B0, E mark may be awarded provided there is a clear attempt to apply the circle theorem.
13.(a) $48x^2 + 6x - 48x^2 + 12x - 12x + 3$ OR $48x^2 + 6x - 48x^2 + 3$.	B2	Accept $48x^2 + 6x - (48x^2 - 12x + 12x - 3)$ or $48x^2 + 6x - (48x^2 - 3)$
6 <i>x</i> + 3	B1	B1 for $16x^2 [-4x + 4x] - 1$ or $48x^2 [-12x + 12x] - 3$ or $-48x^2 [+12x - 12x] + 3$. OR B1 if one error or incorrect (or extra or missing) term within entire expression. (An incorrect term may be implied e.g. $-24x$ implies $-12x - 12x$).
		For last B1, do not accept $48x^2 + 6x - (48x^2 - 12x + 12x - 3)$ or $48x^2 + 6x - (48x^2 - 3)$ without further correct work seen before final $6x + 3$. If <u>no work</u> seen in (a), allow marks in (a) for work
13.(b) $-\frac{1}{2}$ or $-\frac{3}{6}$ or -0.5 or equivalent	B1	Mark final answer.
2 0		

14.(a) $x = 0.4757575100x = 47.5757575 with$	M1	Or correct values $1000x$ and $10x$, or equivalent.
an attempt to subtract		M0 for use of $x = 0.475475475$
471/990 or 157/330 ISW	A1	An answer of 47·1/99 gains M1 only.
Alternative method		
(0.4 + 0.07575=) 4/10 + 75/990 or equivalent	M1 A1	
14 (b) 1	81	
8	ы	
15. 9 + 4√5	B2	If not B2, award B1 for 3 or 4 correct terms within $4 + 2\sqrt{5} + 2\sqrt{5} + 5$ or $4 + 2\sqrt{5} + 2\sqrt{5} + \sqrt{25}$
		(without subsequent correct collection of terms) $(4\sqrt{5} \text{ is equivalent to 'two correct terms'})$
(-) 2	B2	B1 for (numerator of) 10√5 <u>or</u>
		B1 for (denominator of) $5\sqrt{5}$ or $\sqrt{125}$ or
		B1 for appropriate factorisation of both numerator
		and denominator
		e.g. $\frac{\sqrt{5} \times \sqrt{100}}{\sqrt{5} \times \sqrt{25}}$ or $\frac{\sqrt{5} \times \sqrt{5} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$
7 + 4√5 AND irrational	B1	Mark final answer.
		FT for equivalent difficulty (requiring collection of
		terms) AND either B2 awarded AND final answer
$16(a)(Area=)^{1/2}x1x[16+0+2(15+12+7)]$	M2	Is irrational.
or equivalent	1012	Award with only one y-value incorrect.
= 42	A1	F.T. from M1.
		If no marks, SC1 for an answer of 420 (from mis- reading horizontal scale).
$\frac{Alternative method}{(16+15)} + \frac{(15+12)}{2} + \frac{(12+7)}{2} + \frac{(7+0)}{2}$	М2	Individual areas are: 15·5, 13·5, 9·5, 3·5.
		M1 if only one y-value incorrect
		or
		M1 for any 2 (out of 4) correctly evaluated areas
		(of a complete 'strip').
		(Fach area of a tranezium may be seen as the
		sum of the area of a rectangle and a triangle.)
= 42	A1	F.T. from M1 (provided 4 'strips' considered).
		If no marks, SC1 for an answer of 420 (from mis- reading horizontal scale).
16.(b) 'Greater than' WITH valid reason	E1	Allow e.g. increasing the number of strips
e.g. trapezium rule gives an underestimate in this		Improves accuracy.
case and increasing the number of strips improves		
less (shaded area) left out		
more of the area (under curve) included:		
tops of strips are closer to the curve.		

17. (Numerator) $(2x - 5)(x - 4)$	B2	B1 for (2 <i>x</i> 5) (<i>x</i> 4)
(Denominator) $2(x-4)$	B1	
$\frac{2x-5}{2} \text{or} x-\frac{5}{2} \text{or equivalent.}$	B1	Mark final answer. F.T. provided no more than 1 previous error and provided simplification required.
<u>Alternative method</u> : (Numerator) $(x - 5/2) (2x - 8)$	B2	B1 for (x 5/2) (2x 8)
$\frac{2x-5}{2} or x-\frac{5}{2} or equivalent.$	B2	Mark final answer. F.T. provided <u>at least B1 awarded</u> , no more than 1 previous error and provided simplification required.
18. (P[same colour] =) 10/16 × 9/15 + 6/16 × 5/15 or equivalent OR (P[different colours] =) 10/16 × 6/15 + 6/16 × 10/15 or equivalent.	M2	M1 for sight of any correct product.
= 120/240 or equivalent	A1	Award for the answer to either probability (total). Mark final answer. Do not ignore incorrect cancelling. If both probabilities are evaluated, accept 240 written as 16 × 15. If M0A0, award SC1 for an answer of 136/256 or 120/256 (method 'without replacement').
'Yes' with explanation (must refer to the 'other' probability)	E1	If M2A0 or SC1 awarded, then award E1 for 'No', provided only one answer evaluated (from calculating products), and a valid explanation given based on P[same colour] + P[different colours] = 1 or E1 for 'Yes' if both probabilities (incorrectly) evaluated and 'their P[same colour]' = 'their P[different colours]' E0 if both probabilities evaluated and 'their P[same colour]' + 'their P[different colours]' ≠ 1 with 'their P[same colour]' ≠ 'their P[different colours]'.

3300U50-1 WJEC GCSE Maths - Unit 1 HT MS A19/DM