GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 2 (INTERMEDIATE TIER) 3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline 5.(b) Reflection (in the line) \(x=5\) \& B2 \& B1 for stating 'Reflection'. Ignore extra wording once 'reflection' (or 'reflected') seen. B1 for stating \(x=5\) (simply drawing the line is \(B 0\)) \\
\hline \begin{tabular}{l}
6.(a)
\[
\begin{array}{ccrr}
10 x+15=20 \& \text { OR } \& 2 x+3=4 \\
10 x=5 \& \text { OR } \& 2 x=1
\end{array}
\] \\
\(x=\frac{5}{10} \quad\) OR \(\quad x=\frac{1}{2}\) or equivalent
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT until \(2^{\text {nd }}\) error. \\
Mark final answer. \\
Allow an embedded answer but penalise - 1 if contradicted by \(x \neq 1 / 2\) or 0.5 .
\end{tabular} \\
\hline 6.(b) 7(a+3) \& B1 \& Allow 7(1a + 3) Mark final answer. \\
\hline 6.(c) \(5(n-3)\) or \(5 \times(n-3)\) or \((n-3) 5\) or \((n-3) \times 5\) or \(5 n-15\) \& B2 \& B1 for sight of \(n-3 \times 5\) OR sight of \(5 \times n-3\). B0 for unsupported \(n-15\) OR unsupported \(5 n-3\). Allow ' \(n=5(n-3)\) ' etc Mark final answer. \\
\hline \begin{tabular}{l}
7.(a) YES \\
AND a valid explanation. \\
e.g. ' the other two angles would be (both) \(20\left({ }^{\circ}\right)\) ' e.g. diagram showing (isosceles) triangle with angles of \(140^{\circ}, 20^{\circ}\) and \(20^{\circ}\).
\end{tabular} \& E1 \& \begin{tabular}{l}
A valid explanation implies YES circled if not otherwise contradicted (by circling NO). \\
Explanations must engage with the specific triangle given (with an angle of \(140^{\circ}\)) and not isosceles triangles in general.
\end{tabular} \\
\hline \begin{tabular}{l}
7.(b) \\
NO \\
AND a valid explanation. \\
e.g. ' \(120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right) \neq 180\left({ }^{\circ}\right)\) ' \\
'the two angles add to \(150\left({ }^{\circ}\right)\), not \(180\left({ }^{\circ}\right)\)
\[
120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right)+120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right) \neq 360\left({ }^{\circ}\right)
\] \\
'the four angles add to \(300\left({ }^{\circ}\right)\), not \(360\left({ }^{\circ}\right)\)
\end{tabular} \& E1 \& \begin{tabular}{l}
Allow 'the two angles must equal \(180^{\circ}\). \\
Do not accept 'the four angles must equal \(360^{\circ}\), unless it is made clear that the rhombus has two pairs of equal angles. \\
A valid explanation implies NO circled if not otherwise contradicted (by circling YES).
\end{tabular} \\
\hline 7.(c) \(a+b=150\) \& B1 \& \\
\hline 8.
\[
\begin{array}{ll}
{[\mathrm{n}(\mathrm{G} \cap \mathrm{~S})=]} \& 10 \\
{[\mathrm{n}(\mathrm{~S})=]} \& 13
\end{array}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
Entries must be a whole numbers. \\
[\(\mathrm{n}(\mathcal{E})\)] must be 30 (i.e. no additional 'non-Spanish'). Any blank space to be taken as 0 .
\end{tabular} \\
\hline \begin{tabular}{l}
9. (Length of AD or \(\mathrm{BC}=\)) \(10(\mathrm{~cm})\) \\
(Area of \(\mathrm{ABCD}=5 \times 10=\)) \(50\left(\mathrm{~cm}^{2}\right)\)
\[
\begin{aligned}
(\text { Area APB }=) \frac{\pi \times 5^{2}}{4} \& \\
\& =19 \cdot 6(\ldots . .)\left(\mathrm{cm}^{2}\right)
\end{aligned}
\] \\
\((\) Shaded area \(=50-19 \cdot 6=) 30 \cdot 3(\ldots)\) or \(30 \cdot 4\left(\mathrm{~cm}^{2}\right)\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
May be seen on the diagram or implied in later work. \\
FT \(5 \times\) 'their AD (or BC)'. \\
The \(50\left(\mathrm{~cm}^{2}\right)\) may be shown as two areas of \(25\left(\mathrm{~cm}^{2}\right)\) for B1 B1. \\
SC1 for sight of \(\pi \times 5^{2}\) or equivalent (78.5 \(\ldots\)) \\
FT 'their stated area ABCD' - 'their stated area APB' \\
Note: Sight of (25-'area of APB') + 25 implies the first two \(B\) marks. [rectangle divided in half]
\end{tabular} \\
\hline 9. OCW Organisation and Communication.
Accuracy of writing. \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\text { 10.(a) } \begin{aligned}
\frac{1}{6} \times \frac{1}{4} \& \text { or equivalent } \\
\& =\frac{1}{24} \quad \text { ISW }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& Accept \(0.0416 \ldots\) or 0.0417 or 0.042 for M1A1 M1A0 for ' 1 in 24', '1:24'. \\
\hline 10.(b) \(\quad\)\begin{tabular}{rl}
\(\frac{1}{5}+\frac{1}{10}\) \& or equivalent. \\
\& \(=\frac{3}{10}\) or equivalent. ISW
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \\
\hline 11.
\[
\begin{aligned}
\& \left(A C^{2}=\right) 10 \cdot 8^{2}+14 \cdot 4^{2} \\
\& A C^{2}=324 \quad \text { or } \quad(A C=) \sqrt{ } 324 \\
\& \quad(A C=) 18(\mathrm{~cm})
\end{aligned}
\]
\[
\begin{aligned}
(\text { Area } A C D=) \frac{24 \times 18}{2} \& \\
\& =216\left(\mathrm{~cm}^{2}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Accept equivalent of using cos rule (as \(\cos 90=0\)). \\
F.T. V'their 324' provided M1 gained. \\
Final answer of \(A C=324\) is M1A0A0. \\
Alternative method to find \(A C\) \\
A correct and complete method (using two trigonometric relationships)
\[
A C=18(\mathrm{~cm})
\] \\
FT 'their stated AC'. (May be shown on the diagram) Accept equivalent of using \(1 / 2 \times 24 \times 18 \times \sin 90\) (as \(\sin 90=1\)).
\end{tabular} \\
\hline \begin{tabular}{l}
12. \\
One correct evaluation \(7 \cdot 2 \leq x \leq 7 \cdot 3\) 2 correct evaluations \(7 \cdot 275 \leq x \leq 7 \cdot 295\), one \(<0\), one \(>0\). \\
2 correct evaluations \(7 \cdot 275 \leq x \leq 7 \cdot 285\), one \(<0\), one \(>0\).
\[
x=7 \cdot 28
\]
\end{tabular} \& B1
B1

M1

A1 \& | Correct evaluation regarded as enough to identify if negative or positive. If evaluations not seen accept 'too high' or 'too low'. |
| :--- |
| Look out for equating $x^{3}-5 x=350$ |

\hline 13.(a) an expression \& B1 \&

\hline 13.(b) an equation \& B1 \&

\hline \[
14. $$
\begin{gathered}
\text { (Mid-points) } 2 \cdot 5,(7 \cdot 5), 12 \cdot 5 \text { and } 17 \cdot 5 . \\
8 \times 2 \cdot 5+(0 \times 7 \cdot 5)+7 \times 12 \cdot 5+5 \times 17 \cdot 5 \\
(20+0+87 \cdot 5+87 \cdot 5=195) \\
\div 20 \\
=9.75
\end{gathered}
$$

\] \& | B1 |
| :--- |
| M1 |
| m1 |
| A1 | \& | Allow for sight of mid-points. |
| :--- |
| F.T. 'their mid-points' including bounds, provided they fall within the classes (including lower and upper bounds and used consistently). |
| C.A.O. |

\hline $$
\begin{aligned}
& \text { 15. } \begin{array}{r}
(x=) \frac{360}{15} \text { or } 180-\frac{(15-2) \times 180}{15} \\
\text { or equivalent }=24\left({ }^{\circ}\right) \\
(B R=) 8 \times \cos 24 \text { or } 8 \times \sin (90-24) \\
=7.3(0 \ldots)(\mathrm{cm}) \text { or } 7 \cdot 31(\mathrm{~cm})
\end{array}
\end{aligned}
$$ \& M1

A1
M2

A1 \& | May be seen in parts. |
| :--- |
| FT 'their stated value for x ' $\left(x<90^{\circ}\right)$ |
| $M 1$ for $\frac{B R}{8}=\cos 24$ or $\frac{B R}{8}=\sin (90-24)$ |
| Accept equivalent of using sin rule (as $\sin 90=1$). |
| Alternative method to find $B R$ |
| A correct and complete method (using two trigonometric relationships and possibly |
| $B R=7 \cdot 3(0 \ldots)(\mathrm{cm})$ or $7 \cdot 31(\mathrm{~cm})$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 16. \(2 \cdot 656 \times 10^{6}\) \& B2 \& \begin{tabular}{l}
B1 for a correct value but not in standard form. Mark final answer. \\
B1 for sight of 2656000. \\
SC1 for \(2.66 \times 10^{6}\) or \(2.7 \times 10^{6}\) or \(2.6 \times 10^{6}\) or \(2.65 \times 10^{6}\)
\end{tabular} \\
\hline 17. \begin{tabular}{c}
Sight of \(24 \cdot 5\) AND \(15 \cdot 5\) \\
OR \\
Sight of \(23 \cdot 5\) AND \(14 \cdot 5\)
\end{tabular}
\(2(24 \cdot 5+15 \cdot 5)-2(23 \cdot 5+14 \cdot 5) \quad\) or equivalent
\(=4(\mathrm{~cm})\) \& B1
M1

A1 \& | Sight of (Greatest =) 80 OR (Least =) 76 implies B1 |
| :--- |
| FT only for upper bounds of 24.4 AND 15.4 or 24.49 AND 15.49 (lower bounds must be 23.5 AND 14.5 else M0) |
| CAO |
| If M0, award B1 and an SC1 for sight of (Greatest $=$) 80 AND (Least $=$) 76 |

\hline Alternative method.

$$
\begin{aligned}
& \text { Difference between least and greatest } \\
& \text { length for each side }=1(\mathrm{~cm}) \\
& \qquad \begin{aligned}
& 4 \times 1 \\
&=4(\mathrm{~cm})
\end{aligned}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& B 1 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& FT only for differences of 0.9 or 0.99 CAO

\hline | 18. |
| :--- |
| Method to eliminate variable e.g. equal coefficients with appropriate addition or subtraction. |
| First variable found, $x=4$ or $y=-1$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found | \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& | No marks for trial and improvement. Allow 1 error in one term, not the term with equal coefficients. |
| :--- |
| C.A.O. |
| F.T. their ' 1 st variable'. |
| Award no marks for unsupported correct answers. |

\hline | 19.(a)(i) Correct reason given. |
| :--- |
| e.g. 'An angle at the circumference subtended by a diameter is a right angle'. |
| ' line AC is a diameter' | \& E1 \& | Accept any correct unambiguous wording. The key word is 'diameter'. |
| :--- |
| Allow eg 'angle in a semicircle is 90°, 'line AC goes through the centre'. 'opposite a diameter' |
| Do not accept 'because it's a right angle'. |

\hline \[
$$
\begin{aligned}
& \text { 19.(a)(ii) } \quad \tan x=\frac{7 \cdot 5}{4 \cdot 7} \\
& x=\tan ^{-1}(7 \cdot 5 / 4 \cdot 7) \text { or } \tan ^{-1} 1.6 \text { or } \tan ^{-1} 1.59(\ldots) \\
& \\
& =57 \cdot 9(\ldots)\left(\left(^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left({ }^{\circ}\right)\right.
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 |
| A1 | \& | Implies M1. |
| :--- |
| C.A.O. |
| Alternative method to find x |
| A correct and complete method (using Pythagoras's |
| theorem and a trigonometric relationship). M2 $\mathrm{x}=57 \cdot 9(\ldots)\left({ }^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left(^{\circ}\right) \text { CAO A1 }$ |

\hline | 19.(b) $\quad(y=) 58\left(^{\circ}\right)$ |
| :--- |
| Correct circle theorem given. |
| e.g. 'angles (at the circumference) subtended by the same chord (or arc) are equal', 'angles in the same segment (are equal)'. | \& B1

E1 \& | Strict FT of 'their x '. |
| :--- |
| Accept any correct unambiguous wording. Allow eg 'angles on the same chord (are equal)' Do not accept e.g. 'they are equal' on its own. |

\hline
\end{tabular}

