GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 2 (HIGHER TIER) 3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline 4.(a) an expression \& B1 \&

\hline 4.(b) an equation \& B1 \&

\hline $$
\text { 5. } \begin{gathered}
\text { (Mid-points) } 2 \cdot 5,(7 \cdot 5), 12 \cdot 5 \text { and } 17 \cdot 5 . \\
8 \times 2 \cdot 5+(0 \times 7 \cdot 5)+7 \times 12 \cdot 5+5 \times 17 \cdot 5=195) \\
(20+00+87 \cdot 5+87 \cdot 5=195) \\
+20=9.75
\end{gathered}
$$ \& B1
M1

m1

A1 \& | Allow for sight of mid-points. |
| :--- |
| F.T. 'their mid-points' including bounds, provided they fall within the classes (including lower and upper bounds and used consistently). |
| C.A.O. |

\hline 6. $(x=) \frac{360}{15}$ or $180-\frac{(15-2) \times 180}{15}$ or equivalent

$$
=24\left({ }^{\circ}\right)
$$

$$
\begin{array}{r}
(\mathrm{BR}=) 8 \times \cos 24 \text { or } 8 \times \sin (90-24) \\
=7 \cdot 3(0 \ldots)(\mathrm{cm}) \text { or } 7 \cdot 31(\mathrm{~cm})
\end{array}
$$ \& M1

A1
M2

A1 \& | May be seen in parts. |
| :--- |
| FT 'their stated value for $x^{\prime}\left(x<90^{\circ}\right)$ |
| $M 1$ for $\frac{B R}{8}=\cos 24$ or $\frac{B R}{8}=\sin (90-24)$ |
| Accept equivalent of using \sin rule (as $\sin 90=1$). |
| Alternative method to find $B R$ |
| A correct and complete method (using two trigonometric relationships and possibly Pythagoras's theorem) |
| $B R=7 \cdot 3(0 \ldots)(\mathrm{cm})$ or 7.31(cm) |

\hline 7. $2 \cdot 656 \times 10^{6}$ \& B2 \& | B1 for a correct value but not in standard form. Mark final answer. |
| :--- |
| B1 for sight of 2656000 . |
| SC1 for 2.66×10^{6} or 2.7×10^{6} or 2.6×10^{6} or 2.65×10^{6} |

\hline $\begin{array}{llll}\text { 8. } & & \text { Sight of } 24 \cdot 5 \text { AND } & 15 \cdot 5 \\ & \text { OR } & \text { Sight of } 23 \cdot 5 \text { AND } & 14.5\end{array}$ $2(24 \cdot 5+15 \cdot 5)-2(23 \cdot 5+14 \cdot 5)$ or equivalent $=4(\mathrm{~cm})$ \& B1
M1

A1 \& | Sight of (Greatest =) 80 OR (Least =) 76 implies B1 |
| :--- |
| FT only for upper bounds of 24.4 AND 15.4 or 24.49 AND 15.49 (lower bounds must be 23.5 AND 14.5 else M0) |
| CAO |
| If M0, award B1 and an SC1 for sight of (Greatest $=$) 80 AND (Least $=$) 76 |

\hline | Alternative method. |
| :--- |
| Difference between least and greatest length for each side $=1(\mathrm{~cm})$ 4×1 $=4(\mathrm{~cm})$ | \& B1

M1
A1 \& FT only for differences of 0.9 or 0.99 CAO

\hline | 9. |
| :--- |
| Method to eliminate variable e.g. equal coefficients with appropriate addition or subtraction. |
| First variable found, $x=4$ or $y=-1$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found | \& M1

A1
m1

A1 \& | No marks for trial and improvement. |
| :--- |
| Allow 1 error in one term, not the term with equal coefficients. |
| C.A.O. |
| F.T. their ' $1^{\text {st }}$ variable'. |
| Award no marks for unsupported correct answers. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
10.(a)(i) Correct reason given. \\
e.g. 'An angle at the circumference subtended by a diameter is a right angle'. \\
' line AC is a diameter'
\end{tabular} \& E1 \& \begin{tabular}{l}
Accept any correct unambiguous wording. The key word is 'diameter'. \\
Allow eg 'angle in a semicircle is \(90^{\circ}\), 'line AC goes through the centre'. 'opposite a diameter' \\
Do not accept 'because it's a right angle'.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 10.(a)(ii) } \quad \tan x=\frac{7 \cdot 5}{4 \cdot 7} \\
\& x=\tan ^{-1}(7 \cdot 5 / 4 \cdot 7) \text { or } \tan ^{-1} 1.6 \text { or } \tan ^{-1} 1.59(\ldots) \\
\& =57 \cdot 9(\ldots)\left({ }^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left({ }^{\circ}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Implies M1. \\
C.A.O. \\
Alternative method to find \(x\) \\
A correct and complete method (using Pythagoras's theorem and a trigonometric relationship). M2 \(\mathrm{x}=57.9(\ldots)\left({ }^{\circ}\right)\) or \(57 \cdot 8(\ldots)\left({ }^{\circ}\right)\) or \(58\left({ }^{\circ}\right)\) CAO A1
\end{tabular} \\
\hline \begin{tabular}{l}
10.(b) \(\quad(y=) 58\left({ }^{\circ}\right)\) \\
Correct circle theorem given. \\
e.g. 'angles (at the circumference) subtended by the same chord (or arc) are equal', 'angles in the same segment (are equal)'.
\end{tabular} \& B1
E1 \& \begin{tabular}{l}
Strict FT of 'their \(x\) '. \\
Accept any correct unambiguous wording. Allow eg 'angles on the same chord (are equal)' Do not accept e.g. 'they are equal' on its own.
\end{tabular} \\
\hline 11. \(2^{400}\) \& B2 \& B1 for (\(\left.2^{100}\right)^{4}\) OR sight of \(2^{4}\) \\
\hline \[
\text { 12. } \begin{aligned}
(\text { Height }=) \frac{3 \times 5533}{825} \text { OR } \frac{5533}{\frac{1}{3} \times 825} \& \\
\& =20 \cdot 1(2 \mathrm{~cm})
\end{aligned}
\] \& M2
A1 \& \begin{tabular}{l}
M1 for \(5533=1 / 3 \times\) height \(\times 825\) or equivalent. \\
Allow an answer of 20(cm) from correct working.
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method (finding the radius first): \\
Use \(A=\pi r^{2}\) to evaluate \(r\) or \(r^{2}\).
\[
\begin{aligned}
(\text { Height }=) \& \frac{3 \times 5533}{\pi \times 16.2(05 \ldots)^{2}} \text { OR } \frac{5533}{\frac{1}{3} \times \pi \times 16.2(05 . . .)^{2}} \text { OR } \\
\& \frac{3 \times 5533}{\pi \times 262.6(\ldots)} \text { OR } \frac{5533}{\frac{1}{3} \times \pi \times 262.6(\ldots)} \\
= \& 20 \cdot 1(2 \ldots \mathrm{~cm})
\end{aligned}
\]
\end{tabular} \& M2

A1 \& | Allow use of $\pi=3 \cdot 14,3 \cdot 142$ or $3 \cdot 14(59 \ldots)$. |
| :--- |
| When using the π button on the calculator, $r=16 \cdot 2(05 \ldots) O R r^{2}=262 \cdot 6(\ldots) .$ |
| There will be no FT for any radius other than $r=16 \mathrm{~cm}$, from working seen. |
| M1 for $5533=1 / 3 \times$ height $\times \pi \times 16.2(05 \ldots)^{2}$ or equivalent. |
| Allow M1 for use of $r=16(\mathrm{~cm})$ |
| Allow an answer of 20(cm) from correct working. Accept an answer in the range $20 \cdot 10$ to $20 \cdot 143$ (cm) $F T$ base radius $=16 \mathrm{~cm}$: Allow an answer in the range $20 \cdot 6(\mathrm{~cm})$ to $20 \cdot 65(\mathrm{~cm})$ OR 21(cm) from correct working. |

\hline 13.(a) $(2 x+9)(2 x-9)$ \& B2 \& B1 for (2x ... 9) (2x ... 9)

\hline 13.(b) $(7 x-4)(x+2)$ \& B2 \& B1 for (7x ... 4) ($x \ldots 2$)

\hline 13.(c) $(x+2)^{2}(x+7) \mathrm{OR}(x+2)(x+2)(x+7)$ \& B2 \& | $\begin{aligned} & \text { B1 for }(x+2)^{2}(x+2+5) \text { OR } \\ & (x+2)\left[(x+2)^{2}+5(x+2)\right] \text { OR } \\ & (x+7)\left(x^{2}+4 x+4\right) \text { OR } \\ & (x+2)\left(x^{2}+9 x+14\right) \end{aligned}$ |
| :--- |
| Allow B1 for $(x+2)^{2}(x+k)$ where $k \neq 0,2$ or 7 . |

\hline 14. $-1 / 2$ or equivalent \& B2 \& B1 for -2 or $1 / 2$.

\hline 15. $2 n^{2}+1$ or equivalent $\quad=20001$ \& B2

B1 \& | B1 for sight of $2 n^{2}$ OR for sight of consistent $2^{\text {nd }}$ difference 4. |
| :--- |
| FT from their $2 n^{2} \pm k$, where $k \neq 0 \mathrm{OR}$ from their $2 n^{2} \pm a n$, where $a \neq 0$ OR from their $2 n^{2} \pm a n \pm k$, where $a \neq 0, k \neq 0$. An unsupported answer of 20001 gains all 3 marks. If no marks, award SC1 for an unsupported answer of 20000. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
16. Use of 7175 AND (1)•2345 or (1)23•45(\(\div 100)\) \\
\(7175 \times 1 \cdot 2345\)
\[
=(£) 8858
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Or equivalent complete method. \\
FT for 'their 7175' provided \(7170 \leq x<7180\) \\
and 'their 1.2345 ' provided \(1.234 \leq y<1.235\) \\
Sight of \((£) 8857 \cdot 53(75)\) or \((£) 8857 \cdot 54\) implies B1M1. CAO.
\end{tabular} \\
\hline \begin{tabular}{l}
17.(a) General cosine curve with appropriate orientation and position. \\
Correct sketch with curve passing through (\(0^{\circ}, 1\)), (\(90^{\circ}, 0\)) and \(\left(270^{\circ}, 0\right)\) and approximately (\(180^{\circ},-1\)) and \(\left(360^{\circ}, 1\right)\) \\
AND \\
\(90\left({ }^{\circ}\right), 180\left({ }^{\circ}\right), 270\left({ }^{\circ}\right), 360\left({ }^{\circ}\right)\) indicated on the \(x\)-axis AND \\
-1 and 1 indicated on the \(y\)-axis.
\end{tabular} \& M1
A1 \& \begin{tabular}{l}
Ignore curve shown for values \(x<0^{\circ}\) or \(x>360^{\circ}\). \\
Accept \(180^{\circ}\) as mid-way between \(0^{\circ}\) and \(360^{\circ}\) if unlabelled. \\
Accept \(360^{\circ}\) as unlabelled provided the sketch does not exceed \(360^{\circ}\).
\end{tabular} \\
\hline 17.(b) \begin{tabular}{ll}
\& \(46\left({ }^{\circ}\right)\) AND \(314\left({ }^{\circ}\right)\) \\
\& OR \\
\& \(45 \cdot 6\left({ }^{\circ}\right)\) AND \(314 \cdot 4\left({ }^{\circ}\right)\) \\
\& OR \\
\& \(45 \cdot 57\left(29 \ldots .^{\circ}\right)\) AND \(314 \cdot 4\left(27 \ldots .^{\circ}\right)\).
\end{tabular} \& B2 \& \begin{tabular}{l}
B1 for sight of one correct angle. Allow embedded answers. \\
If more than two answers offered award B1 for sight of one correct angle. \\
If no marks, awarded SC1 for truncated answers \\
\(45\left({ }^{\circ}\right)\) AND \(315\left({ }^{\circ}\right)\) OR \(45 \cdot 5\left({ }^{\circ}\right)\) AND \(314 \cdot 5\left({ }^{\circ}\right)\).
\end{tabular} \\
\hline 18. \(\begin{array}{r}0.7 \times 0.2 \times 0.1 \times 6 \\ =0.084 \text { or equivalent }\end{array}\) \& M2 \& M1 for sight of \(0.7 \times 0.2 \times 0.1\) OR 0.014 OR 7/500 or equivalent. Fractional answer: 21/250 or equivalent. (ISW) \\
\hline \begin{tabular}{l}
19.
\[
\begin{aligned}
\hline \text { Sight of } 25 x^{2}+ \& 15 x-15 x-9 \\
\& 25 x^{2}-19 x-9=0
\end{aligned}
\]
\[
x=\frac{-(-19) \pm \sqrt{(-19)^{2}-4 \times 25 \times(-9)}}{2 \times 25}
\]
\[
x=\frac{19 \pm \sqrt{1261}}{50}
\] \\
\(x=1.09\) with \(x=-0.33\) (answers to 2 dp)
\end{tabular} \& B1
B1

M1

A1

A1 \& | Or equivalent. |
| :--- |
| ' $=0$ ' required, but may be implied by an attempt to use the quadratic formula or if $a=25, b=-19$, $c=-9$ used in the quadratic formula. |
| This substitution into the formula must be seen for M1, otherwise award MOAOAO. |
| FT 'their derived quadratic equation' of equivalent difficulty (a, b and c must be non-zero). |
| Allow one slip in substitution for M1 only, but must be correct formula. |
| Can be implied from at least one correct value of x evaluated, provided M1 awarded. |
| CAO for their quadratic equation. |

\hline
\end{tabular}

