GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 2 - INTERMEDIATE TIER 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline \(3(\mathrm{a}) 4\) \& B1 \& \\
\hline 3(b) 21 \& B1 \& \\
\hline 3(c) 24 \& B1 \& \\
\hline 3(d) \(100 \times \frac{4}{34}\) or \(100 \times 4 \div 34\)
\[
11.8 \text { (\%) }
\] \& M2 \& \begin{tabular}{l}
M1 for 100 multiplied by a fraction with either the correct numerator, or the correct denominator, except MO for \(100 \times 4 \div 100\) \\
OR \\
M1 for sight of \(\frac{4}{34}\) or \(4 \div 34\) \\
CAO. Must be correct to1 decimal place \\
A1 for 11.7(...\%)
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 4(a)(i) Angle } 55^{\circ}\left(\pm 2^{\circ}\right) \text { or } 15.277 \ldots(\%)(\pm 0.55 \ldots \%) \\
\& 1080 \times 55(\pm 4) \div 360 \text { or } 3 \times 55(\pm 4) \\
\& \text { or } 1080 \times 15.277 \ldots(\pm 1.11 . .) \\
\& 165 \text { (people) }
\end{aligned}
\] \& B1
M1

A1 \& | Sight of 55 ignoring any incorrect units is B1 only, until used in a relevant calculation |
| :--- |
| FT for M1 only if the angle is out of tolerance but within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| Ignore incorrect units given |
| OR a whole number in the inclusive range 159 to 171 (people) only as FT from working with $55^{\circ} \pm 2^{\circ}$ or $15.277 . . \% \pm 0.55$.. \% |
| Do not FT beyond tolerance of $\pm 2^{\circ}$ or ± 0.55.. $\%$ |
| Check diagram for angles or percentages |

\hline | 4(a)(ii) Carrots $100^{\circ} \pm 2^{\circ}$ and Sprouts $35^{\circ} \pm 2^{\circ}$ |
| :--- |
| or $27.77 . . \% \pm 0.55 \%$ and $9.722 . . \% \pm 0.55 \%$ or appropriate sight of $65^{\circ}(\pm 4)$ $\begin{aligned} & 1080 \times 100(\pm 2) \div 360-1080 \times 35(\pm 2) \div 360, \\ & \text { or } 1080 \times 65(\pm 4) \div 360 \\ & \text { or } 3 \times 65(\pm 4) \\ & \text { or } 3 \times 100(\pm 2)-3 \times 35(\pm 2) \\ & \text { or } \quad \frac{(100(\pm 2)-35(\pm 2)) \times 1080}{360} \quad \text { or equivalent } \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$ | \& B1

M1

A1 \& | Both angles within tolerance |
| :--- |
| FT $65(\pm 4) \times$ 'their number of people per degree' FT for M1 only if one angle is out of tolerance but this one angle is within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| OR a whole number in the inclusive range 183 to 207 (people) only as FT tolerance in angles or percentages |
| Check diagram for angles or percentages |

\hline $$
\begin{array}{cc}
\hline 4 \text { (b) } 420-420 \times 3 \div 14 \text { or } & 420 \times(14-3) \div 14 \\
(=420-90) & 330 \text { (people) } \\
330 \times 2 \div 3 & \\
& 220 \text { (people) }
\end{array}
$$ \& M1

A1
M1

A1 \& | Allow use of $\times 0.21$ as indication of $3 \div 14$ |
| :--- |
| CAO |
| FT 'their derived 330 ', including use of 90 (FT use of 90 gives an answer of 60) Allow FT answer not being a whole number |

\hline | 4(b) Alternative method |
| :--- |
| (Fraction who preferred frozen peas) $\frac{11}{14} \times \frac{2}{3}$ |
| $\underline{22}$ or equivalent 42 |
| (Number who preferred frozen peas) $\frac{22}{42} \times 420$ |
| 220 (people) | \& M1

A1
m1

A1 \& | ISW |
| :--- |
| FT from incorrect cancelling of 22/42 for m1 only (AO) |

\hline
\end{tabular}

5. Total number of half-days 185,304 and 165 AND total number of pupils in Year 11 is 140 $\begin{array}{r} (238+185+304+270+165) \div 140 \text { or } 1162 \div 140 \\ 8.3 \text { (half-days) } \end{array}$	B1 M1 A1	FT ' their total of number of half days' \div 'their 140 ' Must be from a correct evaluated total for 'their entries for the number of half days' ISW
6(a) Appropriate sight of (€) 6000 (Tax at 15%) $0.15 \times 6000(=€ 900)$	B1 B1	Ignore $£$ for $€$ If (a) is not attempted, accept calculations seen in (b)
6(b) (Tax at 22\%) 0.22×20000 or $0.22 \times(30000-10000)$ or equivalent (€) 4400 Total tax due (€) 5300	M2 A1 A1	Ignore $£$ for $€$ M1 for $30000-10000$ (= €20000) CAO, not FT ISW FT 900 + 'their 4400' provided M2 previously awarded

9(a) $375 \div 1.6$ or $375 \times 5 \div 8$ or equivalent $234(.375 \mathrm{mph})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of $\div 1.6$ to $\div 1.613, \times 0.62$ to $\times 0.625$ Accept 234.4 (mph) Allow 234.3(... mph)
$\begin{array}{\|llll} \hline 9(\mathrm{~b}) & & & \\ 260.5 & \div 78 & & \\ & \div 155.552 & & \\ & & & \\ & & & \\ & & & 1.288 \text { (.... minutes) } \end{array}$	M1 M1 M1 A1	Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working) (Lap distance km) (Average lap time in hours) (Average lap time in minutes) Award M3 for sight of 260.5×60 78×155.552 CAO, accept rounded to 1.29 (minutes) or 1.3 (minutes) or 1 minute 17(.29...) seconds If no marks, award SC1 for equivalent operations used without 260.5 or with use of an incorrect 260.5, i.e. $78 \times \frac{60}{155.552}, 60 \div 78 \div 155.552$ or equivalent 78×155.552
9(c) 250	B1	
9(d) $\begin{array}{rrr} 250 & & \\ & \times 1.38 & \\ & & \div 12 \end{array}$ $17(.21 \ldots \text { million } €)$	M1 M1 M1 A1	Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working) Ignore place value errors in working with 'millions' for M marks (=£181.1594... million) (= €206.5217... million) Award M3 for sight of $\frac{250 \times 1.14}{1.38 \times 12}$ CAO. Allow final answer written in full. Allow 'millions' not written in the answer If no marks, award SC1 for equivalent operations used without 250 , i.e. 1.14 or 1.38×12 $1.14 \div 1.38 \div 12$ or equivalent

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
10. \\
(Greatest total length of pictures)
\[
\begin{gathered}
21.5+22.5+23.5+24.5+26.5 \\
\text { or } \quad 21+22+23+24+26+5 \times 0.5
\end{gathered}
\]
\[
(=) \quad 118.5(\mathrm{~cm})
\] \\
(Lower bound of shelf) 117.5(cm) \\
Difference of 1 cm stated or sight of \(118.5-117.5=1(\mathrm{~cm})\)
\end{tabular} \& M1
A1
B1
B1 \& \begin{tabular}{l}
Allow 0.4999(....) for 0.5 throughout, must clearly be a recurring 9 digit \\
Allow for sight of upper bounds of pictures: \\
\(21.5(\mathrm{~cm}), 22.5(\mathrm{~cm}), 23.5(\mathrm{~cm}), 24.5(\mathrm{~cm}), 26.5(\mathrm{~cm})\) \\
CAO from use of appropriate correct upper bounds and lower bound \\
Accept FT from clearly recurring 9s, as \\
\(0.9999999 \ldots\) is considered as equivalent to 1 \\
Accept 117.5-118.5 =-1(cm) \\
Allow 117.5-118.5 = 1 (cm difference) \\
If no marks, award SC1 for correct sum of 'their upper bounds' provided they are all increased but less than 0.5 cm greater than the measurements given in the question
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\text { 11(a) } 6550000000 \times 0.02
\] \\
or \(6550000000 \div 50\) \\
(£) \(1.31 \times 10^{8}\)
\end{tabular} \& M1
A2 \& \begin{tabular}{l}
A1 for (\(£\)) 131 million or \((£) 131000000\) or equivalent (e.g. \(131 \times 10^{6}\)) \\
If no marks, award SC1 for sight of (£) \(1.31 \times 10^{10}(\) from \(6550000000 \times 2)\)
\end{tabular} \\
\hline \begin{tabular}{l}
11(b) \(\quad \pi \times(25.9 \div 2)^{2} \times 2.03\) \\
Answer in the range \(1068\left(\mathrm{~mm}^{3}\right)\) to \(1070\left(\mathrm{~mm}^{3}\right)\)
\end{tabular} \& M2

A1 \& | Allow M1 for sight of any of the following: |
| :--- |
| - $\quad \pi \times 25.9^{2} \times 2.03$ |
| - 4275.8 to 4279 |
| - $1361.7(\ldots) \pi$ |
| - $\pi \times\left((25.9)^{2} \div 2\right) \times 2.03$ |
| - $2137.9(\ldots$... to 2139.(...) |
| - 680.8π to 680.9π |
| CAO. ISW |
| Accept an answer of 340.4(....) π |

\hline
\end{tabular}

$\begin{aligned} & \text { 12(a) } \tan x=\frac{3.9}{56.7} \\ & \begin{array}{r} (x=) \tan ^{-1} 3.9 / 56.7 \text { or }(x=) \tan ^{-1} 0.06878 \ldots \\ (x=) 3.93\left({ }^{\circ}\right) \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A2 } \end{aligned}$	A1 for ($\mathrm{x}=$) 3.9(3... ${ }^{\circ}$) from correct working An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}, \mathrm{AO}$
	M1 m1 A2	A1 for ($x=$) 3.9(3... ${ }^{\circ}$) to 3.9(7... ${ }^{\circ}$) from correct working An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}, \mathrm{AO}$
12(b) $56.7 \times 9.36 \div 3.9$ or 56.7×2.4 or equivalent $136(.08 \mathrm{~cm})$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Ignore place value errors due to change of units for M1 only If units are given they must be correct, accept answer in metres Allow answers from premature approximation in the range 136 (cm) to 136.1 (cm)
12(b) Alternative method (Height of poster =) $\left.\quad \tan \frac{9.36}{3.9(\ldots . .}{ }^{\circ}\right)$ Answer in the range $136(\mathrm{~cm})$ to $137.3(\mathrm{~cm})$	M1 A1	FTT from (a) MO for $\left.\tan 3.9\left(\ldots . .{ }^{\circ}\right)^{\circ}\right)=\underline{9.36}$ Height of poster If units are given they must be correct, accept answer in metres
13(a) 45 (cars)	B1	
13(b) Range correct (07:21 and 07:44) UQ and LQ correct $(07: 22.5$ and 07:35) Median correct $(07: 25)$	B1 B1 B1	Allow 07:21 to 07:22 and 07:44 to 07.45 Accept seen in working if not given on the box-andwhisker Accept seen in working if not given on the box-andwhisker Penalise -1 if the structure of the box-and-whisker plot is not correct, ignore if end vertical lines not shown for whiskers

