GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 1 - HIGHER TIER 3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

 AUTUMN 2020 MARK SCHEME

2(c) $1 / 2 \times(2.2+1.8) \times$ height trapezium $+2.2 \times 2=6.8$ $2 \times$ height trapezium $=2.4$ or height trapezium $=1.2$ (Overall length $=$) $3.2(\mathrm{~m})$	M2 A1 A1	M1 only if brackets omitted for sum of parallel sides in the overall calculation unless dealt with correctly in further working, OR M1 for $1 / 2 \times(2.2+1.8) \times$ height trapezium (brackets must be given or any 'missing brackets' implied by correct interpretation) FT 'their 1.2 ' +2 provided at least M1 previously awarded If no marks, award SC1 for area of the trapezium as $2.4\left(\mathrm{~m}^{2}\right)$ provided not from incorrect working, e.g. $6.8-(2.2+1.8+(0) \cdot 2+(0) \cdot 2)=2.4$ is SC0 $6.8-2.2 \times 2=2.4$ is SC1
2(c) Alternative method 1 : $(2+h t$ trap $) \times 2.2-2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times h t$ trap $=6.8$ Height of trapezium $=1.2$ (Overall length =) 3.2 (m)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 for $1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium or $2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium FT 'their 1.2' +2 provided at least M1 previously awarded
2(c) Alternative method 2 : $\begin{aligned} 2 \times 1 / 2 \times(2+\text { overall length }) \times & {[(2.2-1.8) \div 2] } \\ & + \text { overall length } \times 1.8=6.8 \end{aligned}$ (Overall length =) 3.2 (m)	M2 A2	M1 for $1 / 2 \times(2+$ overall length $) \times[(2.2-1.8) \div 2]$ or $2 \times 1 / 2 \times(2+$ overall length $) \times[(2.2-1.8) \div 2]$ A1 for $2 \times$ Overall length $=6.4$ or correct simplified equation in terms of overall length
3. Unambiguous vertical line $5 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from fence Angle bisector between house and fence $\pm 2^{\circ}$ Correct intersection, position of the tree	B1 B1 B1	Accept a horizontal line drawn from the fence, $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ away from the house FT from B1 for intersection of two straight lines provided both lines within tolerance $\pm 4 \mathrm{~mm}$ or $\pm 4^{\circ}$ Award B3 if the correct position is indicated provided not from incorrect working
$\text { 4(a) }(600 \div 8=) 75$1st 2nd 3rd 4th 5th 6th 7th 8th 25 100 175 250 325 400 475 550	B1 B1	May be seen amongst other inappropriate working, but not from 75 written in the table FT 'their $600 \div 8$ ' incorrectly evaluated
4(b) States it is a random selection (from the first 75 pupils)	E1	Ignore any additional spurious statements Allow for statement that implies 'random' selection, e.g. 'sticks a pin in (a printout of) the spreadsheet', 'the headteacher picked a random number', 'everyone had a fair chance of selection' Do not accept, e.g. 'selects a random odd number' 'using a systematic sampling method' without further clarification,

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& 5(\mathrm{a})(280-100+500) \div 50 \\
\& \text { or }(280-100) \div 50+500 \div 50
\end{aligned}
\] \\
(Sell each ticket for) \\
(£) 13.6(0)
\end{tabular} \& M2 \& \begin{tabular}{l}
M1 for sight of any one of the following: \\
- \((280+500) \div 50 \quad(=£ 15.60)\) \\
- \((280-100) \div 50 \quad(=£ 3.60)\) \\
- \((-100+500) \div 50(=£ 8)\) \\
If units are given they must be correct FT from M1 awarded \\
If no marks, award SC1 for either of the following: \\
- an answer of \((£) 680\) (from \(280-100+500\)) \\
- sight of \(500 \div 50\) correctly evaluated as (£) 10 , allow if embedded within other calculation
\end{tabular} \\
\hline \begin{tabular}{l}
5(a) Alternative method: \\
\((1000-100) \div 250+500 \div 50\) \\
or equivalent using any two points on the line, e.g.
\[
\begin{aligned}
\& (460-100) \div 100+500 \div 50 \\
\& (640-100) \div 150+500 \div 50
\end{aligned}
\] \\
(£) 13.6(0)
\end{tabular} \& M2

A1 \& | M1 for sight of any one of the following, or equivalent: |
| :--- |
| - $(1000-100) \div 250 \quad(=£ 3.60)$ |
| - (460-100) $\div 100 \quad(=£ 3.60)$ |
| - (640-100) $\div 150 \quad(=£ 3.60)$ |
| - 'an overall cost' - 100 |
| 'number of people for that overall cost' |
| - $1000 \div 250+500 \div 50 \quad(=£ 14)$ |
| - $460 \div 100+500 \div 50 \quad(=£ 14.60)$ |
| - $640 \div 150+500 \div 50 \quad(=£ 14.26$ or $£ 14.27)$ |
| - 'an overall cost' |
| 'number of people for that overall cost' |
| If units are given they must be correct |
| FT from M1 awarded with answer rounded or truncated to a penny |
| If no marks, award SC1 for sight of $500 \div 50$ correctly evaluated as $(£) 10$, allow if embedded within other calculation |

\hline
\end{tabular}

5(b) Considering a factor of 400 (200, 100 or 50) people or other suitable point, excluding $£ 500$ for charity, e.g.

- 'an overall cost' - 100
'number of people for that overall cost'
- (200 people) $(820-100) \div 200$,
- (100 people) $(460-100) \div 100$,
- (50 people) $(280-100) \div 50$
(Charity contribution) $500 \div 400$
(Total)
(£) 4.85

5(b) Alternative method:
Considering total cost for 400 people, e.g.
$(400 \div 50) \times(280-100)+500 \quad$ or $8 \times 180+500$
or $1440+500$
or $(400 \div 200) \times(820-100)+500$ or $2 \times 720+500$
or equivalent

$$
\div 400
$$

(£) 4.85
$\div 400$

M1 \quad FT 'their 'an overall cost' - 100
'number of people for that overall cost'
i.e. 'their 3.60'
(= £3.60)

M1 (= £ 1.25) May be embedded within stages of calculation
If units are given they must be correct
If M0, M1, A0 also award SC1 for correct evaluation
resulting from the omission of deducting $£ 100$, e.g.

- $(820 \div 200+1.25=£) 5.35$
- $(460 \div 100+1.25=£) 5.85$
- $\quad(280 \div 50+1.25=£) 6.85$
- correctly evaluated
'an overall cost' +1.25
'number of people for that overall cost'

1
A1
If units are given they must be correct
If no marks (due to omission of £100), award
SC1 for $(8 \times 280+500) \div 400$
or SC2 for answer (£)6.85
or SC1 for $(4 \times 460+500) \div 400$ or SC2 for answer (£)5.85
or SC1 for $(2 \times 820+500) \div 400$
or SC2 for answer (£)5.35
Allow $10^{6}\left(\mathrm{~mm}^{2}\right)$
B1 for any one of the following

- a calculated area $1000000\left(\mathrm{~mm}^{2}\right), 1000^{2}$, $\left(10^{3}\right)^{2}$ or equivalent
- 'their clearly written number' written correctly in standard form

M marks can be awarded in either order

Sight of $2700 \div(0.9 \times 0.75)$ is awarded M2
A1 for $2700 \div 0.9=3000$ or $2700 \div 0.75=3600$ or for $2700 \div 0.675$ or for an appropriate FT division correctly evaluated
(Note: sight of $2700 \div 0.675$ is awarded M2 A1)

7.		In all alternative methods for answering this question accept alternative working in cm , if place value error
(Area of cross-section) $6 \times 1 / 2 \times 30 \times(52 \div 2)$	M3	M2 for $1 / 2 \times 30 \times(52 \div 2)(=390)$ M1 for any use of $52 \div 2 \quad(=26)$ (May be embedded)
2340 (mm^{2})	A1	
(Volume of the box) $234000\left(\mathrm{~mm}^{3}\right)$ OR for a comparison $2340\left(\mathrm{~mm}^{2}\right)>2300\left(\mathrm{~mm}^{2}\right)$	A1	FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
$\begin{aligned} & \text { 7. Alternative method (trapezia) } \\ & \text { (Area of cross-section) } 2 \times 1 / 2 \times(52 \div 2) \times(30+2 \times 30) \\ & 2340\left(\mathrm{~mm}^{2}\right) \end{aligned}$	M3 A1	$M 2$ for $1 / 2 \times(52 \div 2) \times(30+2 \times 30)(=1170)$ M1 for use of $52 \div 2 \quad(=26)$
(Volume of the box) $234000\left(\mathrm{~mm}^{3}\right)$ OR for a comparison $2340\left(\mathrm{~mm}^{2}\right)>2300\left(\mathrm{~mm}^{2}\right)$	A1	FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
```7. Alternative method (1/2absinC) (Area of cross-section) }6\times1/2\times30\times30\times\frac{\sqrt{}{}3}{2 1350\sqrt{}{3}\mathrm{ or 2338(.2.. mm}\mp@subsup{)}{}{2})\mathrm{ or 2340(mm}\mp@subsup{}{(}{2}) (Volume of box) 233820 mm or 234000 (mm ) OR for a comparison 2338(.2 mm}\mp@subsup{)}{}{2})>2300(\mp@subsup{m}{}{2}```	M3   A1   A1	M2 for $1 / 2 \times 30 \times 30 \times \frac{\sqrt{ } 3}{2}$   M1 for $\left(6 \times 1 / 2 \times 30 \times 30 \times \sin 60^{\circ}\right.$   FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
7. Alternative method (triangle area) (Area of triangle) $\quad 1 / 2 \times 30 \times(52 \div 2)$	M2	(= 390)
(Minimum area of triangle required) $2300 \div 6$ $383(.33 . .$.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
Comparison 390 > 383(.33...)	A1	

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& 8(\mathrm{a}) \\
& \begin{array}{r}
4 \times \frac{8}{10} \times \frac{9000}{2000} \quad \text { or } \\
\\
\\
=14.4 \quad \text { or equivalent } \\
\\
\\
=15 \text { (needed) }
\end{array}
\end{aligned}
$$ \& M2

A1

A1 \& | A table method altering all 3 in the same manner at the same time is M0 |
| :--- |
| M1 for correct use of 4 with either $8 / 10$ or $9000 / 2000$ |
| Must be from M2 |
| Allow sight of 14.(...) or 14 with a remainder May not be seen |
| FT provided at least M1 awarded, a second step attempted to find the number of bricklayers needed for 9000 bricks in 10 hours AND rounding up required |
| Accept an answer of 14 provided their assumption in (b) states that some bricklayers can work at a quicker rate than others | <br>

\hline Alternative method: $\frac{2000}{8 \times 4} \quad(=62.5$ (bricks per hour per bricklayer))

$$
2000 \div(8 \times 4) \times 10
$$

$$
=14.4 \quad \text { or equivalent }
$$

$$
=15 \text { (needed) }
$$ \& M1

m1
A1

A1 \& | Accept multiples of $2000 \div(8 \times 4) \times 10(=625)$ in order to reach 9000 |
| :--- |
| Must be from M2 |
| Allow sight of 14.(...) or 14 with a remainder |
| May not be seen |
| Or 14 bricklayers can lay 8750 bricks, or 15 bricklayers can lay 9375 bricks |
| FT provided at least M1 awarded, a second step attempted to find the number of bricklayers needed for 9000 bricks in 10 hours AND rounding required |
| Accept an answer of 14 provided their assumption in (b) states that some bricklayers can work at a quicker rate than others | <br>

\hline | 8(b) |
| :--- |
| Valid assumption e.g. |
| 'All bricklayers work at the same rate', or 'All bricklayers took no breaks (or took breaks as often as before)', or |
| 'The weather did not affect the work', or 'All the bricks are the same size', or 'All conditions remain the same', or 'Bricklayers work at the same constant rate' | \& E1 \& | Accept an assumption that some bricklayers can work at a quicker rate than others provided a final answer of 14 given in (a) |
| :--- |
| Do not accept an assumption based on the need to round 14.4 | <br>


\hline | 9(a) |
| :--- |
| e.g. $100 x=13.888 \ldots$ and $1000 x=138.888 \ldots$ |
| or equivalent AND an attempt to subtract both sides $\begin{array}{r} (x=) \frac{125}{900} \text { or } \frac{1375}{9900} \text { or } \frac{13875}{99900} \text { or equivalent } \\ (x=) \frac{5}{36} \end{array}$ | \& M1

A1

A1 \& | Accept e.g. $\frac{1.25}{9}$ |
| :--- |
| FT 'their 125/900' provided of equivalent difficulty | <br>

\hline
\end{tabular}

9(b)(i) Appropriate explanation e.g.   'It should be $4 / 5 \times 4 / 5$ ', or   'It should be $\times 0.8^{2}$, or   'Each year it would be valued at $4 / 5$ of the previous year's value', or   'Each year he should be taking $1 / 5$ off the value'	E1	Allow sight of correct calculation only Allow incorrect notation e.g. $9600 \times \frac{4^{2}}{5}$   Do not accept e.g.   'Because this calculates the amount lost'
9(b)(ii) $V=9600 \times 0 \cdot 8^{t} \text { or } \quad V=9600 \times(4 / 5)^{t}$   or equivalent	B3	Allow pound signs in their formula   B2 for $9600 \times 0.8^{t}$ or $9600 \times(4 / 5)^{t}$ or $V=9600 \times \frac{4^{t}}{5}$ or $V=\text { initial price } \times 0 \cdot 8^{t} \text { or } V=\text { initial price } \times(4 / 5)^{t}$   B1 for sight of $0 \cdot 8^{t}$ or $(4 / 5)^{t}$ or $9600 \times \frac{4}{5}$ or $V=(9600 \times 0 \cdot 8)^{t}$ or initial price $\times 0.8^{t}$ or initial price $\times(4 / 5)^{t}$ or $V=$ initial price $\times \frac{4^{t}}{5}$   If no marks awarded:   SC1 for $V=9600 \times 0 \cdot 2^{t}$ or $V=9600 \times(1 / 5)^{t}$ or   SC1 for $V=9600 \times a^{t}$, where $0.5<a<1$
	B1	
10(a) Uniform scale using intervals of 0.5	B2	B1 for sight of $15 \div 20$ OR   B1 for a correct first entry on their scale e.g. 0.5 on the first graduation OR   B1 for blank scale in (a) but evidence of the correct scale used in (b)   Note: a correct value with none incorrect can be awarded B2
10(b) $(15+) 10 \times 2+10 \times 2.5+20 \times 0.85+30 \times 0.1$ $15+20+25+17+3(=80)$	M1 A1	FT their uniform scale for a possible M1 only Working may be seen on the graph, including the use of every $2 \mathrm{~cm}^{2}$ represents 5 people   Allow M1 for the sum of all 5 products with any 2 correct (not including 15)   CAO   If no marks awarded, award SC1 for sight of (15), 20, 25, 17, 3
10(c)   (Upper quartile $=$ time for $75^{\text {th }}$ percentile $=$ ) $40(\mathrm{~min})$   (Lower quartile $=$ time for $25^{\text {th }}$ percentile) $\begin{gathered} 2 x=5 \\ x=2.5 \text { or } 5 / 2 \text { or }(20+) \frac{1 / 4}{} \times 10 \\ \\ \\ \quad \text { (Lower quartile }=) 22.5 \text { (minutes) } \end{gathered}$   (Estimate of IQR =) 17.5 (minutes)	B1   M1   A1   A1   B1	Working may be seen on the graph $\text { Or } \frac{5}{20} \times 10$   Note: $90 \div 4=22.5$ is MOAOA0   An unsupported lower quartile of 22.5 with an upper quartile of 67.5 is awarded BOMOAOAO   FT 'their 40' - 'their 22.5' correctly evaluated provided at least 1 mark previously awarded


10(d) 'No' AND a correct explanation   e.g.   'The smaller inter-quartile range on Saturday implies   the waiting times are more closely grouped (or less   dispersed) then on Tuesday, but tells us nothing   about the length of the waiting times on these two   days', or   'Inter-quartile range is not an average', or   'Inter-quartile range only gives a measure of the   spread of the data', or   'The difference in the medians would tell us if the   waiting times were quicker'		E1

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
11(b) \\
\(\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times h=10 \pi\) or equivalent \\
\(\frac{4 \pi h}{3}=10 \pi-\frac{16 \pi}{3}\) or equivalent
\[
(\mathrm{h}=) 3.5 \text { or } \frac{7}{2} \quad(\mathrm{~m})
\] \\
(Height of buoy \(=\) ) 5.5 or \(\frac{11}{2}(\mathrm{~m})\)
\end{tabular} \& M2
m1

A1

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| For isolating the h term |
| FT from M1 |
| All terms may have been multiplied by 3 , or $\pi$ cancelled |
| CAO |
| FT for 'their h' +2 provided M1m1 or M2m1 awarded | <br>

\hline | Alternative method 1: |
| :--- |
| $\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times(H-2)=10 \pi$ or equivalent $\begin{aligned} & \frac{16 \pi}{3}+\frac{4 \pi H}{3}-\frac{8 \pi}{3}=10 \pi \text { or equivalent } \\ & \frac{4 \pi H}{3}=10 \pi-\frac{16 \pi}{3}+\frac{8 \pi}{3} \text { or equivalent } \end{aligned}$ |
| (Height of buoy =) 5.5 or $\frac{11}{2} \quad(m)$ | \& M2

$m 1$
$m 1$

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| FT from M1 |
| For isolating the H term |
| FT from M1m1 |
| All terms may have been multiplied by 3 , or $\pi$ cancelled |
| CAO | <br>

\hline | Alternative method 2 : |
| :--- |
| $\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times(H-2)=10 \pi$ or equivalent |
| $\frac{4 \pi(H-2)}{3}=10 \pi-\frac{16 \pi}{3}$ or equivalent $(H-2=) 3.5 \text { or } \frac{7}{2}$ |
| (Height of buoy $=$ ) 5.5 or $\frac{11}{2}$ (m) | \& M2

m1

A1

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| For isolating the $(H-2)$ term |
| FT from M1 |
| All terms may have been multiplied by 3 , or $\boldsymbol{\pi}$ cancelled |
| CAO |
| FT for 'their h' +2 provided M1m1 or M2m1 awarded | <br>

\hline $$
\begin{aligned}
& 12(\mathrm{a}) \\
& (\text { Area }=) \frac{1}{2} \times 10 \times(0+8+2(3+4.6+6.4)) \\
& \text { OR } \quad \frac{1}{2} \times 10 \times(8+6+9.2+12.8) \\
&
\end{aligned}
$$ \& M2

A1 \& | Award M1 if only one value incorrect |
| :--- |
| FT from M1 | <br>

\hline Alternative method:

$$
\begin{aligned}
& \frac{(0+3)}{2} \times 10+\frac{(3+4.6)}{2} \times 10+\frac{(4.6+6.4)}{2} \times 10+ \\
& \frac{(6.4+8)}{2} \times 10 \\
& \quad[15+38+55+72]
\end{aligned}
$$ \& M2

A1 \& | M1 for the sum of these 4 areas with only 1 value (possibly repeated) incorrect |
| :--- |
| FT from M1 | <br>

\hline
\end{tabular}



