

F

Thursday 7 November 2019 – Morning GCSE (9–1) Mathematics

J560/02 Paper 2 (Foundation Tier)

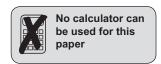
Time allowed: 1 hour 30 minutes

You may use:

- · geometrical instruments
- · tracing paper

Do not use:

· a calculator


Please write clearly in black ink. Do not write in the barcodes.								
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Answer all the questions.
- · Read each question carefully before you start to write your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- · Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- This document consists of 20 pages.

Answer all the questions.

V	Vor	k out						
(;	a)	89 +	- 14					
					(a)			[1]
(1	b)	17×	21					
					(b)			[2]
Т	he	table	e shows some t	temperatures, i	n °C.			
			Monday	Tuesday	Wednesday	Thursday	Friday	
			-5	-1	5	6	-3	
	a) b)	On S	Saturday the te		7°C higher tha		Friday.	°C [1]
					(b)			°C [11

3	Complete each	statement by	v writing the	missing	value in	the box.

(a)	$\frac{2}{5}$	<u>4</u>	[1]
(ω)	5		, - 1

(b)
$$2\frac{1}{3} = \frac{1}{3}$$

(c)
$$7 \times 7 \times 7 \times 7 \times 7 = 7$$

4 Work out.

(a)
$$\frac{5}{6}$$
 of 18 kg

		(a)	 kg	[2
(b)	£5 – £1.49			

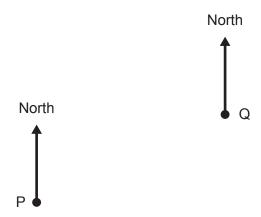
(a) Write 0.3 as a fraction.

	(b) Write $\frac{1}{4}$ as a	a decima	al.		(a)			 [1]
					(b)			 [1]
6	Write the following	ng in ord	er of size, sr	nallest first.				
	5.9	9	0.61	5.977		5.099	5.98	
								 [2]

smallest

-	\	4 41	£ - 11				C
1	vvork	out the	tollowing,	giving	each answer	as a	traction.

(a)
$$1\frac{3}{4} + \frac{1}{2}$$


		(a)	 [1]
(b)	$\frac{3}{8} \div 2$		

© OCR 2019

						ey each that she		the fire	st 5 weeks	s of 2019.		
					13	58	11	22	11			
(a)	Fin	d										
	(i)	t	he medi	an of the	e five ar	mounts,						
							(a)	(i) £				[2]
	(ii)	t	he range	e of the	five amo	ounts.						
							((ii) £				[2]
(b)							e money. d each we	ek ove	er the 6 we	eeks was s	£22.	
	Hov	N	much die	d she sa	ve in th	e 6th we	ek?					
								b) £				[3]

9 The scale drawing shows the positions of two boats, P and Q.

Scale: 1 cm represents 4 km

(a) Find the actual distance between boat P and boat Q.

		(a)	km	[2]
(b)	Measure the bearing of boat Q from boat P.			

(b)° [1]

- (c) A lighthouse is
 - 18 km from boat P
 - on a bearing of 200° from boat Q.

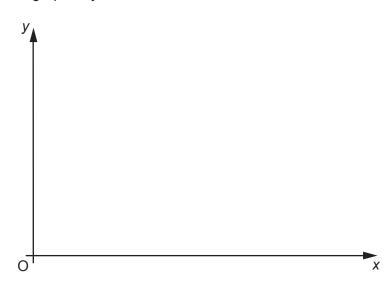
On the scale drawing, mark a possible position of the lighthouse with a cross. [2]

10	part	nan running at a constant speed of 5 metres per second takes 66 seconds to complete ticular distance. orse completes the same distance running at a constant speed of 15 metres per second.	а
		the difference, in seconds, in the times taken by the man and by the horse to run this distance.	Э.
		seconds [3	3]
11	(a)	Alice buys a picture for £180 and later sells it for £216.	
		Find the percentage profit that she made.	
		(a)% [3	3]
	(b)	Rashid wants to increase £345 by 17% in one step by using a decimal multiplier.	
		Write the decimal multiplier to complete Rashid's calculation.	
		345 ×[1]

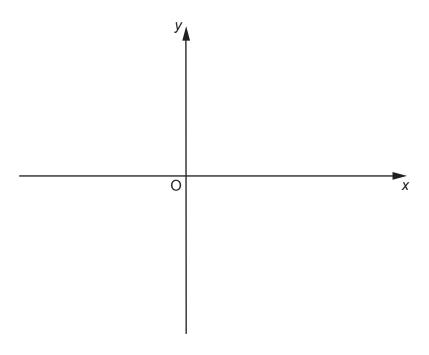
© OCR 2019

12 In an exam, Adam scored the following marks.

Paper 1	17 out of 20				
Paper 2	19 out of 25				


(a)	Show that he scored a higher percentage in Paper 1 than Paper 2.	[2]
-----	--	-----

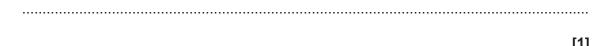
(b) The two marks are added together.


Work out Adam's overall percentage for the two papers.

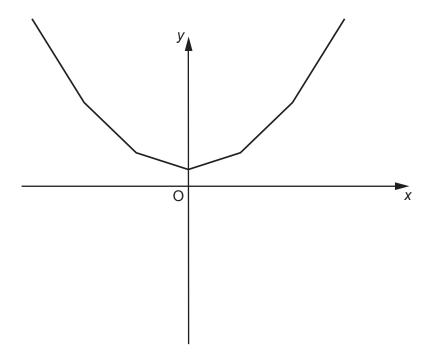
(b)% [3]

13 (a) (i) Sketch the graph of y = 2.

(ii) Sketch the graph of y = x + 1.



[2]


[2]

(iii) Ceri says that the graphs of y = 2 and y = x + 1 cross at the point (2, 3).

Explain the error in her answer.

(b) Oliver has sketched the graph of $y = x^2$ below.

Make two comments about the accuracy of his sketch.

2	 	 	 	
				[2]

14	(a)	Write each of the following ratios in their simplest form.
		(i) 8:10
		(a)(i) : [1]
		(ii) 300 ml : 2.1 litres
		(ii): : :
	(b)	The ratio sin 30°: tan 45° can be written in the form 1: n.
		Find the value of <i>n</i> .
		(b) <i>n</i> =
		(b) H =[5]

15 Angle is planning a presentation evening. She writes down her costs and income.

Costs

10 staff each working 6 hours at £8 per hour

Food:

60 meals at £8.95 each

Prizes:

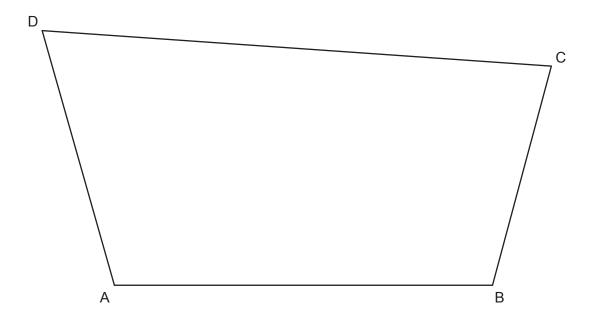
12 prizes at £19.99 each

Income

60 guests each paying £5

Sponsorship £1000

Angie thinks she will make a small profit.


Use estimation to decide if Angie is correct. Show all of your working.

[6]

16			vered some questions of the state of the sta	-		
	Des	scribe her erro	or and give the correct	answer to each	problem.	
	(a)	Question 1	Simplify. 2a×a×a	1		
		ı	Martina's answer 4 <i>a</i>			
		Martina's eri	ror is			
	(b)	Question 2	Simplify X		Correct answer =[2	2]
	(D)	Question 2	Simplify. $\frac{x^{10}}{x^2}$			
			Martina's answer	x ⁵		
		Martina's eri	ror is			
					Correct answer =[2	2]
	(c)	Question 3	$s = ut + \frac{1}{2}at^2$			
			Find s when $u = 0$, t			
			Martina's solution	$s = 0 \times 5 + \frac{1}{2}$	× 6 × 5 ²	
				s = 0 + 15 ²		
				<i>s</i> = 225		
		Martina's en	ror is			
					Correct answer = [2	2]

17 The diagram shows the scale drawing of a garden ABCD.

Scale: 1cm represents 5 m

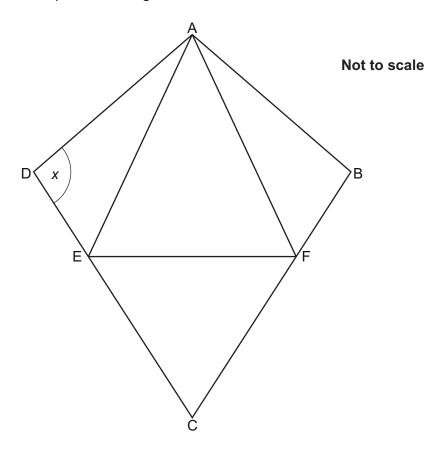
A tree is to be planted in the garden so that it is

- at least 10 m from AB and
- closer to CD than CB and
- at least 15 m from D.

Using a ruler and compasses only, construct and shade the region in which the tree can be planted.

[6]

Turn over © OCR 2019


Solve by factorising.

$$x^2 + 9x + 20 = 0$$

$$x = \dots$$
 or $x = \dots$ [3]

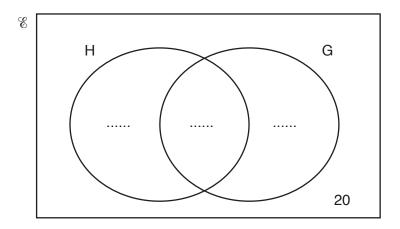
19	On a plane, $\frac{2}{5}$ of the passengers were British.
	30% of the British passengers were men. There were 36 British men on the plane.
	Find the total number of passengers on the plane.
	[5]
20	A has containe 100 panelle that are either red or green
20	A bag contains 100 pencils that are either red or green.
	Describe a method you could use to estimate the number of red pencils in the bag without looking into the bag or having more than one of the pencils out of the bag at any one time.
	[4]

21 The diagram shows a kite, ABCD. AFE and CEF are equilateral triangles.

(a) Write down a mathematical name for quadrilateral AFCE.

(a)	[1	1
----	---	----	---

(b) The ratio of angle DAE : angle EAF = 1:4.


Work out angle x.

Write on the diagram the values of any other angles you use in your working.

(b) $x = \dots^{\circ}$ [4]

22 In a group of 100 students

- 59 study History (H)
- 62 study Geography (G)
- 20 do not study either subject.
- (a) Complete the Venn diagram.

[3]

(b) One of the 100 students is selected at random.

Find the probability that this student studies exactly one of the two subjects.

(b)[2]

Turn over for Question 23

23	A straight line with gradient 4 passes through the point (1, 5).			
	Find the equation of the line in the form $y = mx + c$.			

.....[3]

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.