

F

GCSE (9–1)

Chemisty B (Twenty First Century Science)

J258/01: Breadth in Chemistry (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
<u> </u>	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

1. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

2. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry B:

	Assessment Objective			
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.			
AO1.1	Demonstrate knowledge and understanding of scientific ideas.			
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.			
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.			
AO2.1	Apply knowledge and understanding of scientific ideas.			
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.			
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.			
AO3.1	Analyse information and ideas to interpret and evaluate.			
AO3.1a	Analyse information and ideas to interpret.			
AO3.1b	Analyse information and ideas to evaluate.			
AO3.2	Analyse information and ideas to make judgements and draw conclusions.			
AO3.2a	Analyse information and ideas to make judgements.			
AO3.2b	Analyse information and ideas to draw conclusions.			
AO3.3	Analyse information and ideas to develop and improve experimental procedures.			
AO3.3a	Analyse information and ideas to develop experimental procedures.			
AO3.3b	Analyse information and ideas to improve experimental procedures.			

Q	Question		Answer		AO element	Guidance
1	(a)	(i)	H H ✓ C==CCH H H H	1	1.1	
		(ii)	CH ₃ ✓	1	2.1	
	(b)	(i)	metal/positive ions (top box) ✓ electrons (bottom box) ✓	2	1.1	DO NOT ALLOW answers in any other order
		(ii)	(delocalised) electrons ✓	1	1.1	
	(c)		 ANY ONE FROM: flexible ✓ better insulator ✓ lighter ✓ 	1	2.1	ALLOW any valid point

Question		on	Answer		Marks	AO element	Guidance
2	(a)	(i)	13.7-13.8 (°C) ✓		1	3.1a	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.3/0.31/0.32 award 2 marks 14.38/14.39/14.4 in 1980 and 14.7 in 2000√ 0.3/0.31/0.32 (°C) ✓			2.2	
		(iii)	1920 – 1940 ✓ 1980 – 2000 ✓		2	3.2b	
	(b)	(i)	They absorb infrared radiation and re-emit it. \checkmark		1	1.1	
		(ii)	Question Answer People burning more fossil fuels. What can directly increase the amount of carbon dioxide in the air? What can reduce the amount of carbon dioxide in the air? What can reduce the amount of carbon dioxide in the air? People changing to electric cars. People throwing away plastics.		2	1.1	

	Question		Answer		AO element	Guidance
3	(a)		Carbon AND hydrogen ✓	1	1.1	
	(b)		CH₂ ✓	1	2.2	
	(c)		Alkenes ✓	1	1.1	
	(d)		addition ✓	3	1.1	DO NOT ALLOW answers in any other order
			colourless 🗸			
			double 🗸			

J258/01

	Question		on	Answer		AO element	Guidance
4	4 (a)	(i)	Carbon / C <u>atoms</u> ✓	1	1.1	
			(ii)	covalent (bonds) ✓	1	1.1	ALLOW 'shared electron(s)'
		b)		 Similarity – any one from: High m.p. or b.p. ✓ Both can conduct electricity (depending on state) / AW ✓ Both solids at room temperature ✓ Difference – any one from: Graphite is "greasy" / slippery ✓ Graphite conducts electricity when solid ORA with sodium chloride / sodium chloride only conducts when liquid or dissolved in water ✓ 	2	1.1	IGNORE descriptions of structure ALLOW any suitable properties

C	Question		Answer		AO element	Guidance
5	(a)	(i)	Conducts electricity Lithium (Group 1) Unreactive Chlorine (Group 7) Green coloured gas ✓✓	2	1.1	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 28.4 (g) award 2 marks $(71 \div 14) \times 5.6 \checkmark$ = 28.4 (g) \checkmark	2	2.2	
		(iii)	Reaction with chlorine is more vigorous / faster \checkmark	1	1.1	
	(b)		anode: chlorine_✓ cathode: Lithium ✓		2.2	
	(c)		A chemical cell produces a voltage until the reactants are used up \checkmark	1	1.1	

Q	Question		Answer		AO element	Guidance
6	(a)	(i)	zinc reacts (instead of iron)/is sacrificial ✓ (zinc) more reactive (than iron and transfers electrons to the oxygen) ✓	2	2.1	
		(ii)	More slowly than 🗸	1	3.2b	
		(iii)	less water / air / oxygen can reach/touch nail \checkmark	1	3.2b	ALLOW less water/air/oxygen reacting with nail
	(b)		iron(III) hydroxide ✓	1	2.2	
(c) iron + hydrochloric acid \rightarrow iron chloride \checkmark + hydrogen \checkmark		2	2.2	ALLOW iron nail + hydrochloric acid → iron chloride + hydrogen for both marks IGNORE oxidation state of iron		

Q	Question		Answer		AO element	Guidance
7	7 (a) (i)		lilac ✓	1	1.2	
		(ii)	Nitrogen / phosphorous ✓	1	1.1	
	(b)		K₂SO₄ ✓	1	2.1	
	(c)	(i)	White AND solid / precipitate / insoluble ✓	1	1.2	
		(ii)	potassium chloride ✓	1	1.1	
	(d)	(i)	potassium ✓	1	3.2b	
		(ii)	4 x 10 ⁻⁷ (m) ✓	1	1.2	DO NOT ALLOW 0.0000004
	(e)		Advantage – cheaper / equipment is readily available / quick / convenient to do / AW ✓	2	3.2a	
			Disadvantage – Lack of sensitivity / not accurate (on small amounts) ✓			

	Question		Answer	Marks	AO element	Guidance
8	(a)	(a) transition metal ✓		1	1.1	
	(b)		titanium ✓ titanium oxide ✓ titanium ✓	3	2.1 2.2 x2	
	(c)		(24.3 + 16.0 =) 40.3 ✓	1	1.2	DO NOT ALLOW 40/40.0
	(d) FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 60 (%) award 2 marks $(24/40) \times 100 \checkmark$ = 60 (%) \checkmark		2	2.2		
	(e) (i) FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 59.9 (%) award 3 marks $(47.9/79.9) \times 100 \checkmark$ = 59.94993742 \checkmark		3	2.2 x2 1.2	DO NOT ALLOW answers to any other rounded value	
	(ii) Reactants now include 2 Mg ✓ (Total) mass of atoms in reactants / bottom of fraction / denominator is larger ✓		2	2.2	ALLOW mass of other product is greater	
	(f) (i)		$\left[\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\$	2	1.2	
		(ii)	$2 (Mg) + (O_2) \rightarrow 2 (MgO) \checkmark$	1	1.2	

Q	uesti	ion	Answer			Marks	AO element	Guidance
9	(a)			True	False	3	1.2	
			2 moles of nitrogen react		\checkmark			
			with 3 moles of hydrogen .					
			The reaction can reach		\checkmark			
			100% yield.					
			At equilibrium, the forward		\checkmark			
			reaction is faster than the					
			backward reaction.					
	(b)		1. Put some sulfuric acid in a	i beaker		2	3.3a	One mark for any three steps in the correct order
			2. Add ammonia until the sol	ution is alk	aline			
			Slowly evaporate the solu	tion until m	ost of the			
			solution has gone					
			4. Wait for the crystals to for	m after the	solution has			
			cooled down					
			5. Filter the solution					
			6. Wash and dry the crystals					
			, , ,					
			$\checkmark\checkmark$					
	(c)		FIRST CHECK THE ANSWER O	N ANSWE	R LINE	2	2.2	
			If answer = 75 (%) award 2 mar	(S				
			(9.9÷13.2) × 100 ✓					
			= 75 (%) •					
	(d)		Sundip is wrong because it is a m	ixture / imr	ourities aren't	2	3.1b	ALLOW a pure substance contains one chemical
	. ,		always visible maybe same color	ur as desire	ed substance			for either Sundip or Jack's answer.
			\checkmark					DO NOT ALLOW same reason for both Sundip
								and Jack.
			Jack is wrong because the eleme	nts are:				
			combined/reacted / understands i	hat ammor	nium sultate			
			is made of (different) elements / a	immonium	suifate has a			
			i fixed formula and elements are no	JI easily se	eparateu *			

Question		on	Answer	Marks	AO element	Guidance
10	(a)		An acid is reacting with an alkali (to form a salt plus water) / AW \checkmark	1	1.2	ALLOW the reaction between acid and a base
	(b)	(i)	an indicator 🗸	2	1.2	ALLOW named acid-base indicator
			<u>changes</u> colour ✓			IGNORE details of any quoted colour change
		(ii)	Take readings at eye level / take readings from (bottom	1	3.3b	ALLOW AW for any of the points
			NaOH) drop by drop ✓			ALLOW repeat and look for a similar value ;
	(c)	(i)	$(25.80 - 0.90) = 24.9(0)$ \checkmark	1	2.2	
		(ii)	24.95 not used/is an outlier ✓	2	3.2a	
			Mean = (24.55 + 24.65 =24.6)÷3 = 24.6(0) ✓		1.2	ALLOW Mean = (24.55 + 24.65)/2 = 24.6(0)
						ALLOW 1 mark for correct calculation of a mean using all 4 values (= 24.7 / 24.6875)
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.0037 or 3.7×10^{-3} (g) award 4 marks	4		
			Rearrange to mass of acid = 0.0908 \div volume of acid \checkmark		1.2	ALLOW rearrangement mark if it is clear that 0.0908 is being divided by a volume, even if volume is incorrect.
			$= 0.0908 \div 24.6 \checkmark$		2 × 2.2	ALLOW ECF if incorrect volume is calculated in (ii)
			$ = 0.00369 (g) \checkmark$ = 0.0037 or 3.7 x 10 ⁻³ (g) (2sf) \checkmark		1.2	ALLOW sf mark on incorrect calculation

Question			Answer	Marks	AO element	Guidance
11	(a)	(i)	When the fizzing stops ✓	1	3.3a	
		(ii)	(broken-up tablet) greater surface area (of solid) (AW) ✓ more solid particles can react (in the same time) / more (successful / frequent) collisions ✓	2	1.1	
	(b)		Particles gain <u>activation</u> energy (AW) / <u>frequency</u> of collisions is greater / more <u>successful</u> collisions ✓	1	1.1	
	(c)	(i)	(the fizz means) a gas is being given off/made / carbon dioxide is being given off/made ✓	1	2.2	
		(ii)	Gradient/slope decreasing ✓	1	2.2	ALLOW idea that the curve is less steep (as time increases) IGNORE time increases and mass decreases
		(iii)	(Rate of reaction decreases as): number of (reactant) particles decreases / particles further apart ✓	1	2.2	ALLOW reactants/tablet/water used up IGNORE particles have less energy

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

