GCE

Physics A

H156/01: Breadth in physics

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

M marks | These are method marks upon which A-marks (accuracy marks) later depend. For an \mathbf{M}-mark to be scored, the point to which |
| :--- |
| it refers must be seen in the candidate's answers. If a candidate fails to score a particular \mathbf{M}-mark, then none of the |
| dependent \mathbf{A}-marks can be scored. |

A marks \quad| These are accuracy or answer marks, which either depend on an \mathbf{M}-mark, or allow a C-mark to be scored. |
| :--- |

\mathbf{C} marks | These are compensatory method marks which can be scored even if the points to which they refer are not written down by the |
| :--- |
| candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a |
| C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew |
| the equation, then the C-mark is given. |

B marks | These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to |
| :--- |
| which it refers must be seen specifically in the candidate's answers. | which it refers must be seen specifically in the candidate's answers.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Annotations

Annotation		Meaning		
AE	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).		
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.		
BP	Blank page	Used to indicate an incorrect answer or a point where a mark is lost.		
CON	Contradiction	Use BP on additional page(s) to show that there is no additional work provided by the candidates.		
ECF	Error carried forward	Use mark can be awarded if the candidate contradicts himself or herself in the same response. numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.		
L1	Level 1	L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.		
L2	Level 2	L2 is used to show 4 marks awarded and L2^ is used to show 3 marks awarded.		
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.		
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.		
SEEN	Seen	To indicate working/text has been seen by the examiner. SF		
Error in number of				
significant figures			\quad	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than
:---				
necessary will be considered within the mark scheme. Penalised only once in the paper.				

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	
1	A	1	
2	A	1	
3	C	1	
4	D	1	
5	A	1	
6	C	1	
7	C	1	
8	A	1	
9	C	1	
10	B	1	
11	D	1	
12	A	1	
13	A	1	
14	B	1	
15	C	1	
16	B	1	
17	D	1	
18	A	1	
19	C	1	
20	D	1	
		20	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question		Answer	Marks	Guidance
21	(a)	momentum kinetic energy / total energy	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow energy / mass
	(b)	(Motion / speed / force / acceleration of person or skateboard is to the) left / opposite direction to ball / 'backwards' momentum is conserved $/$ momentum of person $=$ momentum of ball (but in opposite direction) (total) momentum is zero (at start or at the end or during the throwing of the ball) / speed of person < speed of ball	B1 B1 B1	Allow 'principle of conservation of momentum' Allow 'equal and opposite forces (acting on ball and person for the same time interval)' Allow 'different speed' Allow velocity
		Total	5	

Question		Answer	Marks	Guidance
22	(a)	$v \rightarrow \mathrm{~m} \mathrm{~s}^{-1} \quad \text { or } \quad v^{2} \rightarrow \mathrm{~m}^{2} \mathrm{~s}^{-2}$ Clear algebra leading to base unit $=\mathrm{kg} \mathrm{m}^{-1}$	M1 A1	
	(b)	$\begin{aligned} & \frac{0.12}{1.20}(\times 100) \text { or } \frac{0.24}{4.00}(\times 100) \text { or }(k=) 2.78\left(\mathrm{~kg} \mathrm{~m}^{-1}\right) \\ & {[2 \times 0.1+0.06] \text { or } 0.26 \text { or } 26 \%} \\ & \text { absolute uncertainty }=0.72\left(\mathrm{~kg} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow $\left(k_{\max }=\right) \frac{4.24}{1.08^{2}}$ and $\left(k_{\text {min }}=\right) \frac{3.76}{1.32^{2}}$ or 3.635 and 2.158 Allow (range =) 1.48 Note: The answer must be given to 2 SF - as required by the question Ignore any value given for k on the answer line
		Total	5	

Question			Answer	Marks	Guidance
23	(a)	(i)	Straight line drawn from the bottom of the $9.0 \mathrm{~m} \mathrm{~s}^{-1}$ vector to the end of the $4.2 \mathrm{~m} \mathrm{~s}^{-1}$ vector	B1	Ignore incorrect/ omitted direction of resultant vector Ignore any other additional lines drawn
		(ii)	$\begin{aligned} & v^{2}=9.0^{2}+4.2^{2}-2 \times 9.0 \times 4.2 \times \cos 50^{\circ} \\ & v=7.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ OR length of resultant vector line measured and some calculations $v=7.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	C1 A1 C1 A1	Allow other correct variants of this method Note answer to 3 SF is 7.07 Allow length of resultant vector in the range $5.4-5.6 \mathrm{~cm}$ Allow $\pm 0.20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
	(b)	(i)	$\begin{aligned} & \text { (stress }=) \frac{7.5}{8.2 \times 10^{-7}} \text { or } 9.15 \times 10^{6}(\mathrm{~Pa}) \\ & (\text { strain }=) \frac{1}{8.2 \times 10^{-7} \times 2.0 \times 10^{11}} \quad \text { or } 4.57 \times 10^{-5} \\ & x=2.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$ OR $\begin{aligned} & E=\frac{F L}{A x} \\ & 2.0 \times 10^{11}=\frac{7.5 \times 0.62}{8.2 \times 10^{-7} \times x} \\ & x=2.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$	C1 C1 A1 C1 C1 A1	Allow full credit for alternative methods Note answer is 2.84×10^{-5} to 3 SF Note answer is 2.84×10^{-5} to 3 SF Special case: 1 mark for $2.8 \times 10^{-4}(\mathrm{~m})$ or $2.9 \times 10^{-6}(\mathrm{~m})$; 7.5 g or $7.5 \mathrm{~g}^{-1}(g=9.81)$ used instead of 7.5
		(ii)	acceleration at \mathbf{Y} / deceleration at \mathbf{Z} At \mathbf{Y} (tension is) greater / $(T)>7.5(\mathrm{~N})$ At \mathbf{Z} (tension is) less / $(T)<7.5(\mathrm{~N})$	B1 B1 B1	Allow increasing velocity / increasing speed at \mathbf{Y} Allow decreasing velocity / decreasing speed/ negative acceleration at \mathbf{Z} / slowing down Ignore 'downward acceleration' at \mathbf{Z} Ignore drag throughout Allow $(T)>$ weight Allow (T) < weight
			Tota	9	

Question			Answer	Marks	Guidance
24	(a)	(i)	Systematic error / meter not zeroed (AW)	B1	Allow resistance due to crocodile clips / resistance of connecting wires / internal resistance (of cell in ohmmeter) / resistance of ohmmeter
		(ii)	Use a vernier calliper / micrometer to measure diameter of pencil lead (and hence determine A) $\rho=\text { gradient of line } \times A \quad \text { (Any subject) }$ Any one from: - $A=\frac{\pi d^{2}}{4}$ - Measure the diameter in several positions (and average) - Use a large 'triangle' to determine the gradient	B1 B1 B1	Allow vernier / calliper Allow use of 'slope' for gradient Allow $A=\pi r^{2}$ and $d=2 r$
	(b)	(i)	$\begin{aligned} & \left(\frac{1200}{300}\right) \\ & 4.0 \end{aligned}$	B1	Allow 1 SF
		(ii)	$\begin{aligned} & 180=\frac{\rho \times 25}{6.7 \times 10^{-8}} \\ & \rho=4.8 \times 10^{-7}(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note answer is 4.82×10^{-7} to 3 SF
			Total	7	

Question		Answer	Marks	Guidance
26	(a)	constant phase (difference of 90°)	B1	Ignore incorrect value Ignore same wavelength / frequency / period
	(b)	$\begin{aligned} & \text { (period }=) 4.0(\mathrm{~ms}) \\ & \left(f=0.004^{-1}\right) \\ & f=250(\mathrm{~Hz}) \end{aligned}$	$\mathrm{C} 1$ A1	Allow 1 mark for 0.25; k omitted
	(c)	$\begin{aligned} & \text { (intensity }=)\left(\frac{24}{10}\right)^{2}\left(I_{0}\right) \\ & \text { intensity }=5.8\left(I_{0}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Not $\frac{144}{25} I_{0}$ Allow 1 mark for 4.84; misread graph and used $\left(\frac{22}{10}\right)^{2}$
	(d)	resultant displacement = $10(\mu \mathrm{~m})$	B1	Allow ± 1.5; Ignore sign
			6	

Question			Answer	Marks	Guidance
28	(a)		Photon mentioned / one-to-one interaction (between electron and photon) (Maximum KE of electrons decreases as wavelength increases because) $K E_{(\text {max })}=\frac{h c}{\lambda}-\phi \quad$ (Any subject) (When $\lambda<\lambda_{0}$) energy (of photon) > work function / $f>$ threshold frequency and electrons emitted / $K E_{(\max)} \neq 0$ or (When $\lambda=\lambda_{0}$) energy (of photon) = work function / $f=$ threshold frequency and electrons just emitted / not emitted $/ K E_{(\max)}=0$ or (When $\lambda>\lambda_{0}$) energy (of photon) < work function $/ f<$ threshold frequency and electrons not emitted $/ K E_{(\max)}=0$	B1 B1 B1	Not $K E_{(\max)}=h f-\phi$ by itself, but allow with $\underline{c}=f \lambda$ Allow $\frac{h c}{\lambda}$ or $h f$ for 'energy of photon' and ϕ for 'work function' for this B1 mark Not f_{0} for threshold frequency Allow $\lambda_{0} /$ threshold wavelength is the maximum wavelength for electrons to be emitted Allow threshold frequency is the minimum frequency for electron(s) to be emitted Allow work function is the minimum energy for electron(s) to be emitted
	(b)	(i)	$\begin{aligned} & E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{490 \times 10^{-9}} \\ & \text { energy }=4.1 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\mathrm{C} 1$ A1	Note answer to 3 SF is 4.06×10^{-19}
		(ii)	$\begin{aligned} & \text { (number of photons }=\text {) } \frac{0.230}{4.06 \times 10^{-19}} \\ & \text { number of photons }=5.7 \times 10^{17} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ECF from (b)(i) Note answer is 5.6×10^{17} when 4.1×10^{-19} is used
			Total	7	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

