

		Candidate number	er	
MODEL	SOLUT	1015	1	
	•			
	MODEL	MODEL SOLUT	MODEL SOLUTIONS	

GCSE **MATHEMATICS**

Higher Tier

Paper 2 Calculator

Thursday 6 June 2019

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- · a calculator
- · mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- · Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use Pages Mark 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 TOTAL

Advice

In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided

1 Circle the point that lies on the curve $y = x^2 - 4x + 1$

[1 mark]

- (-1, 4)
- (-1, -4) (-1, -2)
- 2 The height of a tree is 12 metres, correct to the nearest metre.

Circle the error interval.

[1 mark]

11.5 m \leq height \leq 12.5 m

11.5 m < height
$$\leq$$
 12.5 m 11.5 m < height < 12.5 m

3 2a is five times bigger than b.

Circle the ratio a:b

[1 mark]

10:1

1:10

2:5

4

Which of these represents the shaded region? Circle your answer.

[1 mark]

AUB

 $(A \cap B)'$

ANB

A' U B'

Turn over for the next question

4

Turn over ▶

IB/M/Jun19/8300/2H

5 Using ruler and compasses, show the region inside the grid that is

less than 4 cm from A

and

nearer to B than to C.

Label the region R.

Show all your construction lines.

[3 marks]

Do no	t writ
outsid	de the
bo	XC

[3 marks]

o Dour divoo 200 illinoo ili i ilodi	6	Beth drives 200 miles in 4 hours
--------------------------------------	---	----------------------------------

She drives the first 18 miles at an average speed of 36 mph

Work out her average speed for the rest of the journey.

 $36 = \frac{18}{E} = 7 = 0.5 \text{ hrs}$

So Beth dives 182 miles in 3.5 hrs

 $5 = \frac{182}{3.5} = 52$

Answer

Turn over for the next question

6

7 The diagram shows rectangle ABDE and right-angled triangle ABC.

AC = 17 cm

BC = 8 cm

Not drawn accurately

BC: CD = 1:2

Work out the area of rectangle ABDE.

 $AB^2 = 17^2 - 8^2$ [4 marks]

 \Rightarrow AB = $\sqrt{14^2 - 8^2} = 15$

BC: GD = 1:2, SO CD = 8 x2 = 16 cm

Ly BD = 8cm + 16cm = 24cm

Area of ABDE = 15 x 24 = 360 cm2

Answer 360 cm²

8 On the axes, sketch the curve $y = x^3 - 2$ You **must** show the coordinates of the *y*-intercept.

[2 marks]

Turn over for the next question

6

Turn over ▶

IB/M/Jun19/8300/2H

In a sport, injury time is added time played at the end of a match.
The table shows the injury time, t (minutes) played in 380 matches.

Injury time, t (minutes)	Frequency
0 < <i>t</i> ≤ 2	59
2 < t ≤ 4	158
4 < t ≤ 6	106
6 < <i>t</i> ≤ 8	45
8 < <i>t</i> ≤ 10	12

9 (a) Circle the two words that describe the data.

[1 mark]

	4.
(ti	-
(continuou	IS /
	1

discrete

ungrouped

9 (b) Which class interval contains the median? You must show your working.

[2 marks]

$$59 + 158 = 217$$

Answer $2 < t \le 4$

Da	not	V	VI	rite
ou	tside	9	ti	he
	bo	X		

45 +12 380 × 100	> = 15		[2
			1
Answer	15	0/	
Allswei		%	
is an integer.			
$-4 < x \le 2$			
and			
$2 \le x + 3 < 9$			
Vork out all the possible values	of x.		
1	_2 2		[3
$-4 < x \leq 2 \rightarrow$		200	
2 < x+3 < 9 =7	-1 < x< 96-	-1,,5	11 3
The second secon	we processed of the same		
	637 003	0 04	
	6.37		

Turn over ▶

8

11	Joe and Kyle share an amount of money in the ratio	7 : n
	Joe gets 35% of the money.	

Work out the value of n.

$$=7 \text{ n} = \frac{7}{0.35} - 7 = 13$$

Answer _____13

12 A biased coin is thrown 250 times.

The relative frequency of Heads is worked out after every 50 throws.

Total number of throws	50	100	150	200	250
Relative frequency	0.4	0.29	0.4	0.32	0.3

Circle the best estimate of the probability of Heads.

[1 mark]

0.32

0.342

0.4

The amounts spent on clothes by 40 boys and 40 girls in one month were recorded.

The table shows information about the amounts spent by the boys.

Amount, x (£)	Midpoint	Number of boys	$m \times f$
0 ≤ <i>x</i> < 20	10	22	220
20 ≤ <i>x</i> < 40	30	9	270
40 ≤ <i>x</i> < 60	50	6	300
60 ≤ <i>x</i> < 80	70	3	210
		Total = 40	1000

The mean for the girls was £35

Estimate the mean for the girls as a percentage of the mean for the boys.

[5 marks]

mean for boys =
$$\frac{1000}{40}$$
 = £25

	35 X100	=	140	%
--	---------	---	-----	---

Answer	140	%
7 1110 1101		, ,

8

	Ali and Mel are making 3-digit codes.
	The digit 0 is not used.
	Ali only uses odd digits.
	Mel only uses even digits.
(a)	Ali can make x more codes than Mel.
	Assume that digits cannot be repeated.
	Work out the value of x. [3 marks]
	A11: 5 x 4 x 3 = 60 codes
	Me1: 4 x 3 x 2 = 24 codes
	60 - 24 = 36
	Answer 3-6
(b)	In fact, digits can be repeated.
()	What does this tell you about the actual value of x?
	Tick one box.
	[1 mark]
	It is bigger than my answer to part (a)
	It is smaller than my answer to part (a)
	It is the same as my answer to part (a)

Here is line L and the graph of y = x - 1

The scales of the axes are not shown.

Do not write outside the box

Work out the equation of line L.

[4 marks]

The scale for the x-axis is double the

y axis (gradunt of 1/2 = 1)

gradient of $L = 2 \times \frac{3-0}{0-4} = -\frac{3}{2}$

L: $y-0=\frac{-3}{2}(x-2)$

y = -3/2x + 3

Answer $y = -\frac{3}{2}x + 3$

8

16 ABC and ACD are triangles.

The area of ACD is 80.5 cm²

Work out the area of ABC.

Give your answer to 3 significant figures.

[4 marks]

Area of a mangle = 1/2 absin C

47

Area of ABC = 0.5 x 19 x 11.5 x Sin 36

= 64.2

Answer 64-2 cm

$$17 m = \frac{p - 2b}{2}$$

p = 68.3 correct to 1 decimal place.

b = 8.7 correct to 1 decimal place.

Work out the lower bound for m.

[3 marks]

max of b = 8.75

Lower bound = 25.375

Answer 25 - 37 5

Turn over for the next question

7

In a bag there are blue discs, green discs and white discs.

There are four times as many blue discs as green discs. number of blue discs: number of white discs = 3:5

One disc is selected at random.

Work out the probability that the disc is either blue or white.

[3 marks]

	() [o mand]
let b = no. of blue discs	Pest
g = no. of green discs	bue or white.
W = no. of white duscs	(32) 2a
b = 4g (x3) bue 3b = 12g	
3b = 5w (ww) b w	
4:1,3:5	
=7 12:3 , 12:20	
12n + 3n + 20n = 35n *	
b 9 W 32/35	
Answer	

19 Work out the area of the trapezium.

Do not write outside the box

Not drawn accurately

$$\tan 64 = \frac{h}{4} = 1$$
 $h = 8.201...$

[4 marks]

Area =
$$\frac{1}{2} \times (15+11) \times h = 106.6$$

Answer ______ 1 0 6 · 6 ____ cm²

Turn over for the next question

7

20 Expressions for consecutive triangular numbers are

$$\frac{n(n+1)}{2}$$
 and $\frac{(n+1)(n+2)}{2}$

Prove that the sum of two consecutive triangular numbers is always a square number.

[4 marks]

$$n(n+1) + (n+1)(n+2) = n(n+1) + (n+1)(n+2)$$

$$\frac{2}{2} = \frac{2}{2}$$

$$= \frac{n^2 + n + n^2 + 3n + 2}{2} = \frac{2n^2 + 4n + 2}{2}$$

$$= \frac{2}{2}$$

$$= \frac{2}{2} + \frac{2n^2 + 2n + 1}{2} = \frac{2n^2 + 4n + 2}{2}$$

$$= \frac{2}{2} + \frac{2n^2 + 2n + 1}{2} = \frac{2n^2 + 4n + 2}{2}$$

-		

21 A solid shape is made by joining two cones.

Each cone has the same radius.

One cone has sla

slant height = 2 × radius

The other cone has

slant height = 3 × radius

The total surface area of the shape is 57.8π cm²

Curved surface area of a cone = πrl where r is the radius and l is the slant height

Work out the radius.

[3 marks]

$$2^{nd}$$
 come curved $s \cdot a = \pi x r x 3 r = 3 \pi r^2$

$$=75r^2 = 57.8$$

$$=7 r^2 = 11.56$$

$$=7 r = 3.4$$

Answer 3.4 cm

7

Show that $(5\sqrt{3} - \sqrt{12})^2$ simplifies to an integer.

(5/3-/12)2= 74512/600 (5/3-/12)([3 marks, 5 \in 3 - \in 12)
$= (5\sqrt{3})^2 - 2(5\sqrt{3} \times \sqrt{12}) + (\sqrt{12})^2$	
$= 75 - 2(5\sqrt{3}6) + 12$	
= 75 - 60 + 12 = 84 27	

23 A and B are similar cuboids.

surface area of A: surface area of B = 16: 25

Work out volume of A : volume of B

Circle your answer.

[1 mark]

4:5

16:25

64:125

256:625

Here is a sketch of the curve $y = x^2 + 4x - 12$

Work out the values of x for which $x^2 + 4x - 12 < 0$ Give your answer as an inequality.

[3 marks]

$$x^2 + 4x - 12 = (x+6)(x-2)$$

Answer ___ - 6 < X < 2

7

25 A sample of 50 eggs is taken from Farm A.

The table shows information about the masses of the eggs from Farm A.

Farm A

Mass, m (grams)	Frequency
53 < m ≤ 58	8
58 < m ≤ 63	19
63 < m ≤ 68	15
68 < m ≤ 73	8

A sample of 50 eggs is taken from Farm B.

The histogram shows information about the masses of the eggs from Farm B.

For medium eggs, 53 g < mass ≤ 63 g

The Farm A sample has more medium eggs than the Farm B sample.

Using the table and the histogram, estimate how many more.

You must show your working.

[4 marks]

$$55 - 65 = 10 \times 2 = 20 \text{ eggs}$$
 $\frac{3}{50} = \frac{3}{50} = \frac{3}{10} \times 20 = 6 \text{ eggs}$

$$50 \quad 55 - 63 = \frac{8}{10} \times 20 = 16 \text{ eggs}$$

Turn over for the next question

4

26 $(x+5)(x+2)(x+a) \equiv x^3 + bx^2 + cx - 30$

Work out the values of the integers a, b and c.

[3 marks]

$$(x+5)(x+2)(x+a) = (x^{2} + 7x+10)(x+a)$$

$$= x^{3} + ax^{2} + 7x^{2} + 7ax + 10x + 10a$$

$$= x^{3} + (7+a)x^{2} + (7a+10)x + 10a$$

10a = -30

=7a=-3

7(-3)+10=C=-11

7-3= 6 = 4

27

$$f(x) = \frac{2x}{5} - 1$$

Work out the value of $f^{-1}(3) + f(-0.5)$

[5 marks]

$$f^{-1}(x)$$
: Let $y = \frac{2x}{5} - 1$
=7 $y + 1 = \frac{2x}{5}$
=7 $5y + 5 = 2x$
=7 $x = \frac{5y + 5}{2}$
So $f^{-1}(x) = \frac{5x + 5}{2}$

$$=7$$
 $y+1=\frac{2x}{5}$

$$=7$$
 $5y + 5 = 2x$

$$=7 x = \frac{5y+5}{}$$

$$50 \ rac{1}{x} = \frac{5x+5}{2}$$

$$4^{-1}(3) = \frac{5(3)+5}{2} = 10$$

$$f(-0.5) = \frac{2(-0.5)}{5} - 1 = \frac{-6}{5}$$

Answer 8 · 8

END OF QUESTIONS

