
Answer all the questions.

1 Work out $(2 \times 10^3) \times (4 \times 10^4)$, giving your answer in standard form.

(b) Solve.

$$\frac{6x-10}{5}=1$$

- 3 Ed has a card shop.
 - (a) He buys a particular card for £1.20 and sells it for £1.68.

Calculate his percentage profit on this card.

$$\frac{1.68-1.2}{1.2}$$
 ×100 =

(b) Ed's profit on "Good Luck" cards in 2018 was £360. This was a decrease of 20% on his profit in 2017.

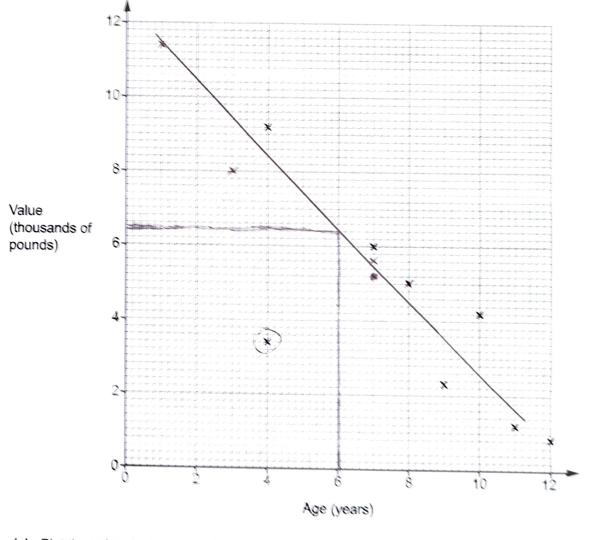
Work out Ed's profit on "Good Luck" cards in 2017.

4 (a) A sunflower grows at a rate of 4 cm each day.

How many days does it take to grow from a height of 80 cm to more than 1.06 m?

$$\frac{106-80}{4} = 6.5 \rightarrow 7$$

(b) If the sunflower grows at a faster rate, how would this affect your answer to part (a)?


It would take fewer days. [1]

Turn over

5 The table shows the ages and values of 11 cars of the same model.

Age (years)	4	7	11	1	9	10	4	3	7	8	12
Value (thousands of pounds)	9.2	6.0	1.2	11.4	2.3	4.2	3.4	8.0	5.6	5.0	0.4

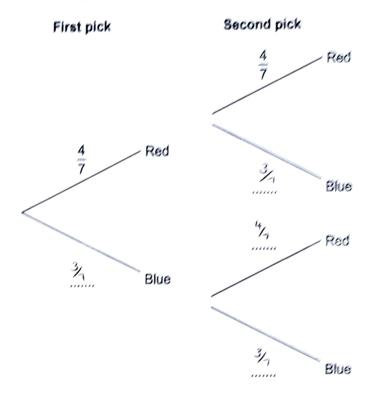
The points for the first 7 cars are plotted on the scatter diagram.

- (a) Plot the points for the remaining 4 cars.
- (b) Describe the type and strength of the correlation shown in the completed scatter diagram.

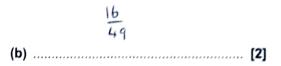
[2]

(c) One car lost its value more quickly than the other cars.

On the scatter diagram, draw a circle around the point representing this car. [1]


(d) By drawing a line of best fit, estimate the value of a car that is 6 years old.

(e) Explain the limitations of using the equation of the line of best fit to estimate the value of a car that is 16 years old.


Since the data only extends to cars up to 12 ... years old, we could suggest that the trend may [1] not continue.

6

- 6 A bag contains 4 red counters and 3 blue counters only. Jack picks a counter at random and then replaces it. Jack then picks a second counter at random.
 - (a) Complete the tree diagram.

(b) Work out the probability that Jack picks two red counters.

[2]

7 Adam buys some theatre tickets in a sale.

The normal prices are:

£80 for each adult £40 for each child.

In the sale, the prices are reduced by 15%. Adam buys 2 adult tickets and 1 child ticket at the sale price. A 2% booking fee is then added to the total cost of the tickets.

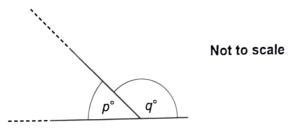
Calculate the total amount that Adam must pay.

80 + 80 + 40 = £200. $200 \times 0.85 = 170$

170×1-02 =

£ 173.40 [6]

Turn over


8 Mrs Mills buys 4 packs of treats for her cats, Fluff and Tigger.

She gives Fluff $\frac{1}{6}$ of a pack each day. She gives Tigger $\frac{1}{5}$ of a pack each day. For how many complete days will the 4 packs of treats last?

$$\frac{4}{(130)} = \frac{120}{11}$$

9

9 An interior angle of an isosceles triangle is p° and an exterior angle is q° .

It is given that q = 5p.

∋ p=30.

(a) Write the ratio p: q in its simplest form.

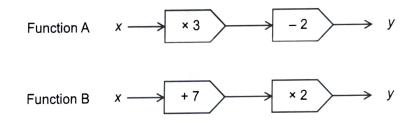
(b) Work out the two different possible sets of angles for the isosceles triangle.

(b) Triangle 1: ...30...°, ...3.0...°, ...12.0...° Triangle 2: ...30...°, ...75...°, ...75...°

10 (a) Write $\frac{1}{6}$ as a recurring decimal.

(b) Elsa divides a two-digit number by another two-digit number. She gets the answer 0.15.

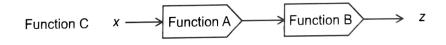
She says that there is only one possible pair of numbers that will give this answer. Is she correct? Show how you decide.


$$x = 0.15$$

 $10x = 1.55$
 $\Rightarrow 90c = 1.4$.
 $\Rightarrow x = \frac{1.4}{9} = \frac{1.4}{90}$. There are no equivalent
fractions where the numerator and denominator
are have two digits.

(b) Evaluate.

 $8^{\frac{1}{3}}$

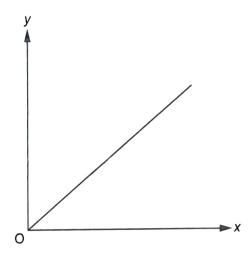

Maths Made Easy 11

12 Here are two functions.

(a) Find an algebraic expression for the output of the **inverse** of function A when the input is x.

(b) Here is a composite function C.

Find the value x when z = 4x.

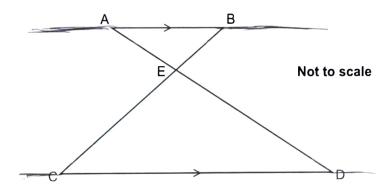

$$x \xrightarrow{A} 3x - 2.$$

$$3x - 2 \xrightarrow{B} 2(3x + 5) = 6x + 10.$$

Turn over

12

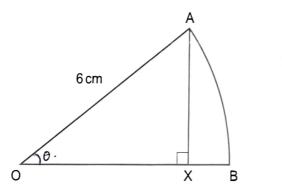
13 Shirley is asked to sketch a graph of $y = 5^x$ for $x \ge 0$. She produces the following.



The graph has two errors.

How should they be corrected?

1The	e	hshoul	d	revghl	(Q, I.)	
2The	<u>. gra</u> c	līent s	hauld be	increa	s.inghor	all. x.,
(1+	should	be a	CUTVE	not o	L line).	


14 In the diagram AB is parallel to CD. AED and BEC are straight lines.

Prove that triangle ABE is similar to triangle CDE.

Angle	AEB	=	Angle CED	(as they are apposite angles).
•			J	(as they are alternate angles)
			•	(as they are alternate angles)
				equal so they are [3]
		g	ung.1. f.	(4) 000 [V]
Simila	ur.			

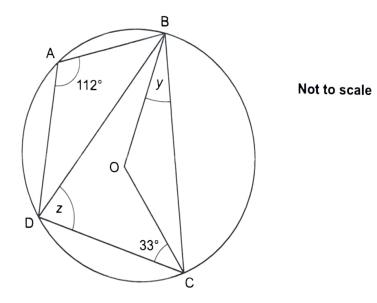
15 OAB is a sector of a circle, centre O. OA = 6 cm and AX is perpendicular to OB.

Not to scale

The area of sector OAB is 6π cm².

Show that $AX = 3\sqrt{3}$ cm.

 $\frac{\theta}{360} \times 6^2 \times \pi = 6\pi \implies \frac{\theta}{60} = 1.$ $\Rightarrow \theta = 60^{\circ}.$


$$6 \sin 60^{\circ} = AX = 6 \times \frac{\sqrt{3}}{2}$$

= $3\sqrt{3}$ cm.

[6]

15

16 A, B, C and D are points on the circumference of a circle, centre O.

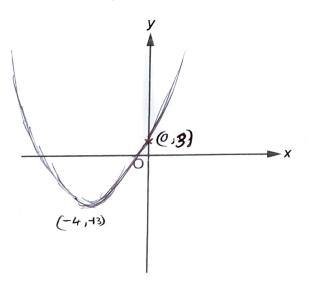
Angle BAD = 112° and angle DCO = 33° .

(a) Show that angle $y = 35^{\circ}$. Give reasons for each stage of your working. [4]

ABCD is a cyclic quadritateral, so
$$\angle BCD = 4343$$
 180- $\angle BAD$
= 180-112 = 68°.
 $\Rightarrow \angle OCB = 68 - 33 = 35°$
OBC is an isoscales triangle, so $y = 35°$.

(b) Work out angle z. Give reasons for your answer. $\angle BOC = 1(0^{\circ} (180 - 35 - 35))$

$$\angle BOC = \frac{10^{\circ}}{2} = 55^{\circ}$$

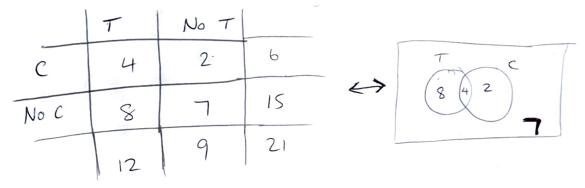

Angle $z = \dots 55$	>° because	angle	at Ci	r.cumference	Ĵſ.
half of	the angle	ct the	Centre.	,	
	0				
9				Turn ov	• •

17 (a) Write $x^2 + 8x + 3$ in the form $(x + a)^2 - b$.

$$(9x+4)^2 - 16 + 3$$

(a) $(x+4)^2 - 13$ [3]

(b) Sketch the graph of $y = x^2 + 8x + 3$. Show clearly the coordinates of any turning points and the *y*-intercept.

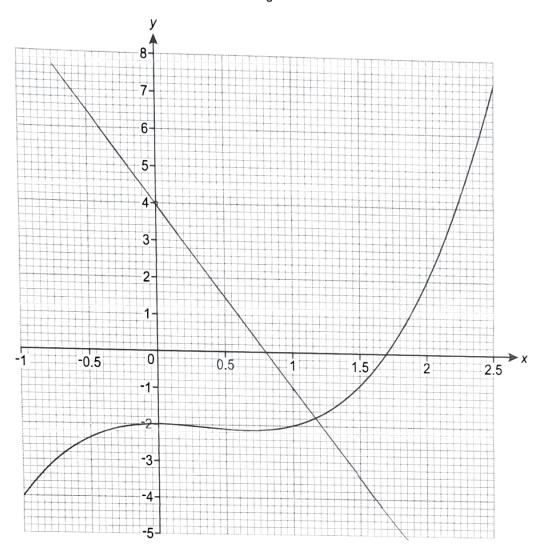


ſ	4	1
•		

- 18 21 people travelled to a meeting.
 - 12 used a train.
 - 6 used a car.
 - 7 did not use a train or a car.
 - Some used a train and a car.

Two people are chosen at random from those who used a train.

Find the probability that both these people also used a car.


$$\frac{4}{12} \times \frac{3}{11} = \frac{12}{12 \times 11} = \frac{1}{11}$$

19 The graph of $y = x^3 - x^2 - 2$ is drawn on the grid.

(a) Use the graph to solve $x^3 - x^2 - 2 = 0$. Give your answer correct to 1 decimal place.

- (b) The equation $x^3 x^2 + 5x 6 = 0$ can be solved by finding the intersection of the graph of $y = x^3 x^2 2$ and the line y = ax + b.
 - (i) Find the value of a and the value of b.

$$0 = x^{3} - x^{2} + 5x - 6 = (x^{3} - x^{2} - 2) = + (5x - 4)$$

=)
$$\chi^3 - \chi^2 - 2 = 4 - 5 \chi$$

(ii) Hence, use the graph to solve the equation $x^3 - x^2 + 5x - 6 = 0$. Give your answer correct to 1 decimal place.

END OF QUESTION PAPER