Answer all the questions.

1 Work out $\left(2 \times 10^{3}\right) \times\left(4 \times 10^{4}\right)$, giving your answer in standard form.
\qquad

2 (a) Simplify fully.

$$
\frac{3 a^{8} \times 2 a^{5}}{a^{2}}
$$

\qquad
(a)
(b) Solve.

$$
\frac{6 x-10}{5}=1
$$

$$
\Rightarrow 6 x-10=5
$$

$$
\Rightarrow 6 x=15
$$

$$
\Rightarrow x=
$$

(b) $x=\ldots \ldots \ldots \ldots \ldots$

3 Ed has a card shop.
(a) He buys a particular card for $£ 1.20$ and sells it for $£ 1.68$.

Calculate his percentage profit on this card.

$$
\frac{1.68-1.2}{1.2} \times 100=
$$

(a)

(b) Ed's profit on "Good Luck" cards in 2018 was $£ 360$.

This was a decrease of 20% on his profit in 2017.
Work out Ed's profit on "Good Luck" cards in 2017.

(b) $£450$

4 (a) A sunflower grows at a rate of 4 cm each day.
How many days does it take to grow from a height of 80 cm to more than 1.06 m ?

$$
\begin{aligned}
& 1.06 m=106 \mathrm{~cm} . \\
& \quad \frac{106-80}{4}=6.5 \rightarrow 7
\end{aligned}
$$

(b) If the sunflower grows at a faster rate, how would this affect your answer to part (a)?
\qquad

5 The table shows the ages and values of 11 cars of the same model.

Age (years)	4	7	11	1	9	10	4	3	7	8	12
Value (thousands of pounds)	92	6.0	1.2	11.4	2.3	4.2	3.4	8.0	5.6	5.0	0.4

The points for the first 7 cers are ploted on the scater diagram.

(a) Plot the points for the remanning 4 calls
(b) Describe the type and strengith of the comelation shown in the completed scatter diagram. ……....................ngag......nnghate.
(c) One car lost its value more quickly than the other cars.

On the scatter diagram, draw a circle around the point representing this car.
(d) By drawing a line of best fit, estimate the value of a car that is 6 years old.
(d) $£ \ldots6400$
(e) Explain the limitations of using the equation of the line of best fit to estimate the value of a car that is 16 years old.

$$
\begin{aligned}
& \text {..Since the dat.................nly......extends...to.......cars.........p...to }
\end{aligned}
$$

6

6 Abag contains 4 red counters and 3 blue counters only, Jack picks a counter at random and then replaces it.
Jack then picks a second counter at random.
(a) Complete the tree diagram,

(b) Work out the probability that Jack picks two red counters,

$$
\frac{4}{7} \times \frac{4}{7}
$$

(b)

7

7 Adam buys some theatre tickets in a sale.
The normal prices are:
$£ 80$ for each adult
$£ 40$ for each child.
In the sale, the prices are reduced by 15%.
Adam buys 2 adult tickets and 1 child ticket at the sale price.
A 2% booking fee is then added to the total cost of the tickets.

Calculate the total amount that Adam must pay.

$$
80+80+40=£ 200
$$

$$
200 \times 0.85=170
$$

$170 \times 1.02=$
\qquad

Maths Made Easy

8 Mrs Mills buys 4 packs of treats for her cate, Fluff and Niger.
She gives Fluff $\frac{1}{6}$ of a pack each day.
She gives Tagger $\frac{1}{5}$ of a pack each day.
For how many complete days will the 4 packs of treats last?

$$
\begin{aligned}
1 / 6+1 / 5 & =\frac{5}{30}+\frac{6}{80}=11 / 30 \text { parliper day } \\
\frac{4}{(11 / 30)} & =\frac{120}{11}
\end{aligned}
$$

9 An interior angle of an isosceles triangle is p° and an exterior angle is q°.

It is given that $q=5 p$.
(a) Write the ratio $p: q$ in its simplest form.
(a) \qquad
\qquad 5
(b) Work out the two different possible sets of angles for the isosceles triangle.

$$
\begin{aligned}
& 5 p+p=180 \\
& \Rightarrow 6 p=180 \\
& \Rightarrow p=30 .
\end{aligned}
$$

 Triangle 2: ...30..., ...75 $\ldots \ldots, \ldots 75 \ldots{ }^{\circ}$ [4]

10 (a) Write $\frac{1}{6}$ as a recurring decimal.
(a) \qquad
(b) Elsa divides a two-digit number by another two-digit number.

She gets the answer 0.15 .
She says that there is only one possible pair of numbers that will give this answer.
Is she correct? Show how you decide.

$$
\begin{aligned}
x= & 0.1 \dot{5} \\
10 x= & 1.5 \dot{5} \\
& \Rightarrow 9 x=1.4 . \\
& \Rightarrow x=\frac{1.4}{9}=\frac{14}{90} . \text { There are no equivalent } \\
& \text { fractions where the numerator and denominator } \\
& =\text { have two digits. }
\end{aligned}
$$

11 (a) Simplify fully.

$$
\sqrt{200}
$$

$$
\sqrt{2 \times 100}=\sqrt{2} \sqrt{100}=10 \sqrt{2}
$$

(b) Evaluate.
(b)

2

12 Here are two functions.

Function A

Function B

(a) Find an algebraic expression for the output of the inverse of function A when the input is x.

$$
\frac{x+2}{3}
$$

(a) \qquad
(b) Here is a composite function C .

Find the value x when $z=4 x$.

$$
\begin{gathered}
x \xrightarrow{A} \quad 3 x-2 \\
3 x-2 \quad \xrightarrow{B} 2(3 x+5)=6 x+10 \\
b x+10=4 x \\
\Rightarrow 2 x=-10 \\
\Rightarrow x=-5
\end{gathered}
$$

13 Shirley is asked to sketch a graph of $y=5^{x}$ for $x \geqslant 0$. She produces the following.

The graph has two errors.
How should they be corrected?
1The...........g.rap.h........should................turough........(O.,.1.)
(1t.....sheuld.......................................not..............ine).:...................... [2]

14 In the diagram $A B$ is parallel to $C D$. $A E D$ and $B E C$ are straight lines.

Prove that triangle ABE is similar to triangle CDE.

..All....corresponding.......angles......are......equal......so.......................e. Similar.
$15 O A B$ is a sector of a circle, centre O.
$O A=6 \mathrm{~cm}$ and $A X$ is perpendicular to $O B$.

Not to scale

The area of sector $O A B$ is $6 \pi \mathrm{~cm}^{2}$.
Show that $A X=3 \sqrt{3} \mathrm{~cm}$.

$$
\begin{aligned}
& \frac{\theta}{360} \times 6^{2} \times \pi=6 \pi \quad \Rightarrow \frac{\theta}{60}=1 \\
& \Rightarrow \theta=60^{\circ} \\
& \Rightarrow \sin 60^{\circ}=A x=6 \times \frac{\sqrt{3}}{2} \\
& =3 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

$16 A, B, C$ and D are points on the circumference of a circle, centre O.
Angle $\mathrm{BAD}=112^{\circ}$ and angle $\mathrm{DCO}=33^{\circ}$.

Not to scale
(a) Show that angle $y=35^{\circ}$.

Give reasons for each stage of your working.
$A B C D$ is a cyclic quadrilateral, so $\angle B C D=180-\angle B A D$

$$
\begin{aligned}
& =180-112=68^{\circ} . \\
\Rightarrow \angle O C B & =68-33=35^{\circ} \\
O B C & \text { is an isosceles triangle, so } y=35^{\circ} .
\end{aligned}
$$

(b) Work out angle z.

Give reasons for your answer.

$$
\begin{aligned}
& \angle B O C=110^{\circ} \quad(180-35-35) \\
& \angle B O C=\frac{110^{\circ}}{2}=55^{\circ}
\end{aligned}
$$

Angle $z=\ldots5 .5 \ldots^{\circ}$ becauseangle...
.......half...of..................ngle at.....................entre.. \qquad
\qquad

17 (a) Write $x^{2}+8 x+3$ in the form $(x+a)^{2}-b$.

$$
(x+4)^{2}-16+3
$$

(a) $\ldots \ldots \ldots(x+4)^{2}-13 \ldots \ldots \ldots \ldots$
(b) Sketch the graph of $y=x^{2}+8 x+3$.

Show clearly the coordinates of any turning points and the y-intercept.

1821 people travelled to a meeting.

- 12 used a train.
- 6 used a car.
- 7 did not use a train or a car.
- Some used a train and a car.

Two people are chosen at random from those who used a train.
Find the probability that both these people also used a car.

$$
\frac{4}{12} \times \frac{3}{11}=\frac{12}{12 \times 11}=1 / 1
$$

19 The graph of $y=x^{3}-x^{2}-2$ is drawn on the grid.

(a) Use the graph to solve $x^{3}-x^{2}-2=0$. Give your answer correct to 1 decimal place.

$$
x=
$$

$$
1.7
$$

(b) The equation $x^{3}-x^{2}+5 x-6=0$ can be solved by finding the intersection of the graph of $y=x^{3}-x^{2}-2$ and the line $y=a x+b$.
(i) Find the value of a and the value of b.

$$
\begin{aligned}
0 & =x^{3}-x^{2}+5 x-6=\left(x^{3}-x^{2}-2\right)+(5 x-4) \\
& \Rightarrow x^{3}-x^{2}-2=4-5 x
\end{aligned}
$$

(b)(i) $a=$ \qquad偶...... 5
$b=$ \qquad
(ii) Hence, use the graph to solve the equation $x^{3}-x^{2}+5 x-6=0$. Give your answer correct to 1 decimal place.

$$
\text { (ii) } x=\ldots \ldots \ldots . . .1 .2
$$

